Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, D., Yao, Z. H., Wei, Y., Rong, Z. J., Shan, L. C., Arnaud, S., Jared, E., Wei, H. Y., and Wan, W. X. (2020). Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations. Earth Planet. Phys., 4(1), 51–61.doi: 10.26464/epp2020002

2020, 4(1): 51-61. doi: 10.26464/epp2020002

PLANETARY SCIENCES

Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Laboratoire de Physique Atmospherique et Planetaire, STAR institute, Universite de Liege, Liege, Belgium

4. 

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

5. 

Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, California, USA

Corresponding author: Yong Wei, weiy@mail.iggcas.ac.cn

Received Date: 2019-10-15
Web Publishing Date: 2020-01-01

Proton cyclotron waves (PCWs) can be generated by ion pickup of Martian exospheric particles in the solar wind. The solar wind ion pickup process is highly dependent on the “IMF cone angle” — the angle between the solar wind velocity and the interplanetary magnetic field (IMF), which also plays an important role in the generation of PCWs. Using data from 2.15 Martian years of magnetic field measurements collected by the Mars Atmosphere and Volatile Evolution (MAVEN) mission, we have identified 3307 upstream PCW events. Their event number distribution decreases exponentially with their duration. A statistical investigation of the effects of IMF cone angle on the amplitudes and occurrence rates of PCWs reveals a slight tendency of PCWs’ amplitudes to decrease with increasing IMF cone angle. The relationship between the amplitude and IMF cone angle is weak, with a correlation coefficient r = –0.3. We also investigated the influence of IMF cone angle on the occurrence rate of PCWs and found that their occurrence rate is particularly high for intermediate IMF cone angles (~18°–42°) even though highly oblique IMF orientation occurs most frequently in the upstream region of the Martian bow shock. We also conclude that these variabilities are not artefacts of temporal coverage biases in MAVEN sampling. Our results demonstrate that whereas IMF cone angle strongly influences the occurrence of PCWs, IMF cone angle may also weakly modulate their amplitudes in the upstream region of Mars.

Key words: ion pickup; proton cyclotron waves; Martian exosphere

Barabash, S., Dubinin, E., Pissarenko, N., Lundin, R., and Russell, C. T. (1991). Picked-up protons near Mars: PHOBOS observations. Geophys. Res. Lett., 18(10), 1805–1808. https://doi.org/10.1029/91GL02082

Bertucci, C., Romanelli, N., Chaufray, J. Y., Gomez, D., Mazelle, C., Delva, M., Modolo, R., González-Galindo, F., and Brain, D. A. (2013). Temporal variability of waves at the proton cyclotron frequency upstream from Mars: implications for Mars distant hydrogen exosphere. Geophys. Res. Lett., 40(15), 3809–3813. https://doi.org/10.1002/grl.50709

Blanco-Cano, X., Russell, C. T., Huddleston, D. E., and Strangeway, R. J. (2001). Ion cyclotron waves near Io. Planet. Space Sci., 49(10-11), 1125–1136. https://doi.org/10.1016/S0032-0633(01)00020-4

Brain, D. A., Bagenal, F., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mazelle, C., Mitchell, D. L., and Ness, N. F. (2002). Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res., 107(A6), 1076. https://doi.org/10.1029/2000JA000416

Brinca, A. L., and Tsurutani, B. T. (1989). Influence of multiple ion species on low-frequency electromagnetic wave instabilities. J. Geophys. Res., 94(A10), 13565–13569. https://doi.org/10.1029/JA094iA10p13565

Brinca, A. L. (1991). Cometary linear instabilities: from profusion to perspective. In A. Johnstone (Ed.), Cometary Plasma Processes (pp. 211-221). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM061p0211222

Connerney, J. E. P., Espley, J. R., DiBraccio, G. A., Gruesbeck, J. R., Oliversen, R. J., Mitchell, D. L., Halekas, J., Mazelle, C., Brain, D., and Jakosky, B. M. (2015a). First results of the MAVEN magnetic field investigation. Geophys. Res. Lett., 42(21), 8819–8827. https://doi.org/10.1002/2015GL065366

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015b). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Cowee, M. M., Winske, D., Russell, C. T., and Strangeway, R. J. (2007). 1D hybrid simulations of planetary ion-pickup: energy partition. Geophys. Res. Lett., 34(2), L02113. https://doi.org/10.1029/2006GL028285

Cowee, M. M., Gary, S. P., and Wei, H. Y. (2012). Pickup ions and ion cyclotron wave amplitudes upstream of Mars: first results from the 1D hybrid simulation. Geophys. Res. Lett., 39(8), L08104. https://doi.org/10.1029/2012GL051313

Delva, M., Zhang, T. L., Volwerk, M., Magnes, W., Russell, C. T., and Wei, H. Y. (2008). First upstream proton cyclotron wave observations at Venus. Geophys. Res. Lett., 35(3), L03105. https://doi.org/10.1029/2007GL032594

Delva, M., Mazelle, C., Bertucci, C., Volwerk, M., Vörös, Z., and Zhang, T. L. (2011). Proton cyclotron wave generation mechanisms upstream of Venus. J. Geophys. Res., 116(A2), A02318. https://doi.org/10.1029/2010JA015826

Gary, S. P., Smith, C. W., Lee, M. A., Goldstein, M. L., and Forslund, D. W. (1984). Electromagnetic ion beam instabilities. Phys. Fluids, 27(7), 1852–1862. https://doi.org/10.1063/1.864797

Gary, S. P., and Madland, C. D. (1988). Electromagnetic ion instabilities in a cometary environment. J. Geophys. Res., 93(A1), 235–241. https://doi.org/10.1029/JA093iA01p00235

Gary, S. P., Madland, C. D., Omidi, N., and Winske, D. (1988). Computer simulations of two-pickup-ion instabilities in a cometary environment. J. Geophys. Res., 93(A9), 9584–9596. https://doi.org/10.1029/JA093iA09p09584

Gary, S. P., Akimoto, K., and Winske, D. (1989). Computer simulations of cometary-ion/ion instabilities and wave growth. J. Geophys. Res., 94(A4), 3513–3525. https://doi.org/10.1029/JA094iA04p03513

Gary, S. P. (1993). Theory of Space Plasma Microinstabilities. Cambridge, UK: Cambridge University Press.222

Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015). The solar wind ion analyzer for MAVEN. Space Sci. Rev., 195(1-4), 125–151. https://doi.org/10.1007/s11214-013-0029-z

Huddleston, D. E., Strangeway, R. J., Warnecke, J., Russell, C. T., and Kivelson, M. G. (1998). Ion cyclotron waves in the Io torus: wave dispersion, free energy analysis, and SO2+ source rate estimates. J. Geophys. Res., 103(E9), 19887–19899. https://doi.org/10.1029/97JE03557

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., … Brain, D. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev., 195(1-4), 3–48. https://doi.org/10.1007/s11214-015-0139-x

Leisner, J. S., Russell, C. T., Dougherty, M. K., Blanco-Cano, X., Strangeway, R. J., and Bertucci, C. (2006). Ion cyclotron waves in Saturn’s E ring: initial Cassini observations. Geophys. Res. Lett., 33(11), L11101. https://doi.org/10.1029/2005GL024875

Mazelle, C., and Neubauer, F. M. (1993). Discrete wave packets at the proton cyclotron frequency at Comet P/Halley. Geophys. Res. Lett., 20(2), 153–156. https://doi.org/10.1029/92GL02613

Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., … Slavin, J. (2004). Bow shock and upstream phenomena at Mars. Space Sci. Rev., 111(1-2), 115–181. https://doi.org/10.1023/B:SPAC.0000032717.98679.d0

Means, J. D. (1972). Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves. J. Geophys. Res., 77(28), 5551–5559. https://doi.org/10.1029/JA077i028p05551

Meeks, Z., Simon, S. and Kabanovic, S. (2016). A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn. Planet. Space Sci., 129, 47–60. https://doi.org/10.1016/j.pss.2016.06.003

Rankin, D., and Kurtz, R. (1970). Statistical study of micropulsation polarizations. J. Geophys. Res., 75(28), 5444–5458. https://doi.org/10.1029/JA075i028p05444

Romanelli, N., Bertucci, C., Gómez, D., Mazelle, C., and Delva, M. (2013). Proton cyclotron waves upstream from Mars: observations from Mars global surveyor. Planet. Space Sci., 76, 1–9. https://doi.org/10.1016/j.pss.2012.10.011

Romanelli, N., Mazelle, C., Chaufray, J. Y., Meziane, K., Shan, L., Ruhunusiri, S., Connerney, J. E. P., Espley, J. R., Eparvier, F., … Jakosky, B. M. (2016). Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: associated variability of the Martian upper atmosphere. J. Geophys. Res., 121(11), 11113–11128. https://doi.org/10.1002/2016JA023270

Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y. (1990). Upstream waves at Mars: Phobos observations. Geophys. Res. Lett., 17(6), 897–900. https://doi.org/10.1029/GL017i006p00897

Russell, C. T., Wei, H. Y., Cowee, M. M., Neubauer, F. M., and Dougherty, M. K. (2016). Ion cyclotron waves at Titan. J. Geophys. Res., 121(3), 2095–2103. https://doi.org/10.1002/2015JA022293

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci., 54(4), 357–369. https://doi.org/10.1016/j.pss.2006.01.003

Tsurutani, B. T., and Smith, E. J. (1986). Strong hydromagnetic turbulence associated with comet Giacobini-Zinner. Geophys. Res. Lett., 13(3), 259–262. https://doi.org/10.1029/GL013i003p00259

Tsurutani, B. T., Thorne, R. M., Smith, E. J., Gosling, J. T., and Matsumoto, H. (1987). Steepened magnetosonic waves at comet Giacobini-Zinner. J. Geophys. Res., 92(A10), 11074–11082. https://doi.org/10.1029/JA092iA10p11074

Tsurutani, B. T., Page, D. E., Smith, E. J., Goldstein, B. E., Brinca, A. L., Thorne, R. M., Matsumoto, H., Richardson, I. G., and Sanderson, T. R. (1989). Low-frequency plasma waves and ion pitch angle scattering at large distances (3.5×105 km) from Giacobini-Zinner: interplanetary magnetic field α dependences. J. Geophys. Res., 94(A1), 18–28. https://doi.org/10.1029/JA094iA01p00018

Tsurutani, B. T. (1991). Comets: a laboratory for plasma waves and instabilities. In A. Johnstone (Ed.), Cometary Plasma Processes (pp. 189-209). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM061p0189222

Wei, H. Y., and Russell, C. T. (2006). Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk. Geophys. Res. Lett., 33(23), L23103. https://doi.org/10.1029/2006GL026244

Wei, H. Y., Russell, C. T., Zhang, T. L., and Blanco-Cano, X. (2011). Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planet. Space Sci., 59(10), 1039–1047. https://doi.org/10.1016/j.pss.2010.01.004

Wei, H. Y., Cowee, M. M., Russell, C. T., and Leinweber, H. K. (2014). Ion cyclotron waves at Mars: occurrence and wave properties. J. Geophys. Res., 119(7), 5244–5258. https://doi.org/10.1002/2014JA020067

Winske, D., and Gary, S. P. (1986). Electromagnetic instabilities driven by cool heavy ion beams. J. Geophys. Res., 91(A6), 6825–6832. https://doi.org/10.1029/JA091iA06p06825

Wu, C. S., and Davidson, R. C. (1972). Electromagnetic instabilities produced by neutral–particle ionization in interplanetary space. J. Geophys. Res., 77(28), 5399–5406. https://doi.org/10.1029/JA077i028p05399

Wu, C. S., and Hartle, R. E. (1974). Further remarks on plasma instabilities produced by ions born in the solar wind. J. Geophys. Res., 79(1), 283–285. https://doi.org/10.1029/JA079i001p00283

Yamauchi, M., Hara, T., Lundin, R., Dubinin, E., Fedorov, A., Sauvaud, J. A., Frahm, R. A., Ramstad, R., Futaana, Y., …Barabash, S. (2015). Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere. Planet. Space Sci., 119, 54–61. https://doi.org/10.1016/j.pss.2015.09.013

Yoon, P. H., and Wu, C. S. (1991). Ion pickup by the solar wind via wave-particle interactions. In A. Johnstone (Ed.), Cometary Plasma Processes (pp. 241-258). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM061p0241222

Zhang M. H. G., Luhmann, J. G., Nagy, A. F., Spreiter, J. R., and Stahara, S. S. (1993). Oxygen ionization rates at Mars and Venus: relative contributions of impact ionization and charge exchange. J. Geophys. Res., 98(E2), 3311–3318. https://doi.org/10.1029/92JE02229

[1]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[2]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[3]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[4]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[5]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[6]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[7]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics. doi: 10.26464/epp2020025

[8]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[9]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[10]

FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022

[11]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[12]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[13]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[14]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[15]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[16]

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

[17]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[18]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics. doi: 10.26464/epp2020024

[19]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan