Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zheng, T. Y., He, Y. M., and Zhu, Y. (2022). A new approach for inversion of receiver function for crustal structure in the depth domain. Earth Planet. Phys., 6(1), 1–11. http://doi.org/10.26464/epp2022008

doi: 10.26464/epp2022008

SOLID EARTH: SEISMOLOGY

A new approach for inversion of receiver function for crustal structure in the depth domain

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), Beijing 100029, China

2. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: YuMei He, ymhe@mail.igcas.ac.cn

Received Date: 2021-08-11
Web Publishing Date: 2021-11-23

A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain, named common conversion amplitude (CCA) inversion, is presented. The conversion amplitude in the depth domain, which represents the impedance change in the medium, is obtained by assigning the receiver function amplitude to the corresponding conversion position where the P-to-S conversion occurred. Utilizing the conversion amplitude variation with depth as an optimization objective, imposing reliable prior constraints on the structural model frame and velocity range, and adopting a stepwise search inversion technique, this method efficiently weakens the tendency of easily falling into the local extremum in conventional receiver function inversion. Synthetic tests show that the CCA inversion can reconstruct complex crustal velocity structures well and is especially suitable for revealing crustal evolution by estimating diverse velocity distributions. Its performance in reconstructing crustal structure is superior to that of the conventional receiver function imaging method.

Key words: crustal imaging; receiver function; depth domain; inversion

Ai, Y. S., Liu, P. C., and Zheng, T. Y. (1998). Adaptive hybrid global inversion algorithm. Sci. China Ser. D-Earth Sci., 41(2), 137–143. https://doi.org/10.1007/BF02932432

Ammon, C. J., Randall, G. E., and Zandt, G. (1990). On the nonuniqueness of receiver function inversions. J. Geophys. Res. :Solid Earth, 95(B10), 15303–15318. https://doi.org/10.1029/JB095iB10p15303

Chang, S. J., Baag, C. E., and Langston, C. A. (2004). Joint analysis of teleseismic receiver functions and surface wave dispersion using the Genetic algorithm. Bull. Seismol. Soc. Am., 94(2), 977–987. https://doi.org/10.1785/0120030110

Chen, L., Wen, L. X., and Zheng, T. Y. (2005). A wave equation migration method for receiver function imaging: 1. Theory. J. Geophys. Res. :Solid Earth, 110(B11), B11309. https://doi.org/10.1029/2005JB003665

Chen, L., Zheng, T. Y., and Xu, W. W. (2006). A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J. Geophys. Res. :Solid Earth, 111(B9), B09312. https://doi.org/10.1029/2005JB003974

Dueker, K. G., and Sheehan, A. F. (1997). Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J. Geophys. Res. :Solid Earth, 102(B4), 8313–8327. https://doi.org/10.1029/96JB03857

Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A., and Elkins-Tanton, L. T. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett., 300(3-4), 299–310. https://doi.org/10.1016/j.jpgl.2010.10.007

Gilbert, H. J., Sheehan, A. F., Dueker, K. G., and Molnar, P. (2003). Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J. Geophys. Res. :Solid Earth, 108(B5), 2229. https://doi.org/10.1029/2001JB001194

He, Y. M. , Zheng, T. Y. , Ai, Y. S. , Hou, G. B. , and Chen, Q. F. (2018). Growth of the lower continental crust via the relamination of arc magma. Tectonophysics, 724-725, 42-50.https://doi.org/10.1016/j.tecto.2018.01.006222

Julià, J., Ammon, C. J., Herrmann, R. B., and Correig, A. M. (2000). Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int., 143(1), 99–112. https://doi.org/10.1046/j.1365-246x.2000.00217.x

Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.222

Kennett, B. L. N. , and Engdahl, E. R. 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. , 105(2), 429-465.https://doi.org/10.1111/j.1365-246X.1991.tb06724.x222

Kind, R., Yuan, X., Saul, J., Nelson, D., Sobolev, S. V., Mechie, J., Zhao, W., Kosarev, G., Ni, J., … Jiang, M. (2002). Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 298(5596), 1219–1221. https://doi.org/10.1126/science.1078115

Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. :Solid Earth, 84(B9), 4749–4762. https://doi.org/10.1029/JB084iB09p04749

Lawrence, J. F., and Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. J. Geophys. Res. :Solid Earth, 111, B06307. https://doi.org/10.1029/2005JB003973

Li, Y. H., Wu, Q. J., Pan, J. T., and Sun, L. (2012). S-wave velocity structure of northeastern China from joint inversion of Rayleigh wave phase and group velocities. Geophys. J. Int., 190(1), 105–115. https://doi.org/10.1111/j.1365-246X.2012.05503.x

Ling, Y., Zheng, T. Y., He, Y. M., and Hou, G. B. (2020). Response of Yunnan crustal structure to eastward growth of the Tibet Plateau and subduction of the India plate in Cenozoic. Tectonophysics, 797, 228661. https://doi.org/10.1016/j.tecto.2020.228661

Liu, P. C., Hartzell, S., and Stephenson, W. (1995). Non-linear multiparameter inversion using a hybrid global search algorithm: applications in reflection seismology. Geophys. J. Int., 122(3), 991–1000. https://doi.org/10.1111/j.1365-246X.1995.tb06851.x

Poppeliers, C., and Pavlis, G. L. (2003). Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory. J. Geophys. Res. :Solid Earth, 108(B2), 2112. https://doi.org/10.1029/2001JB000216

Sheehan, A. F., Shearer, P. M., Gilbert, H. J., and Dueker, K. G. (2000). Seismic migration processing of P-SV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States. J. Geophys. Res. :Solid Earth, 105(B8), 19055–19065. https://doi.org/10.1029/2000JB900112

Tao, K., Niu, F. L., Ning, J. Y., Chen, Y. S., Grand, S., Kawakatsu, H., Tanaka, S., Obayashi, M., and Ni, J. (2014). Crustal structure beneath NE China imaged by NECESSArray receiver function data. Earth Planet. Sci. Lett., 398, 48–57. https://doi.org/10.1016/j.jpgl.2014.04.043

Wu, Q. J., and Zeng, R. S. (1998). The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform. Acta Geophys. Sin., 41(5), 669–679.

Zeng, Q. D., Chen, R. Y., Yang, J. H., Sun, G. T., Yu, B., Wang, Y. B., and Chen, P. W. (2019). The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrol. Sin., 35(7), 1939–1963. https://doi.org/10.18654/1000-0569/2019.07.01

Zheng, T. Y., Zhao, L., and Zhu, R. X. (2009). New evidence from seismic imaging for subduction during assembly of the North China craton. Geology, 37(5), 395–398. https://doi.org/10.1130/G25600A.1

Zheng, T. Y., He, Y. M., Yang, J. H., and Zhao, L. (2015). Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China. Sci. Rep., 5, 14995. https://doi.org/10.1038/srep14995

Zheng, T. Y., He, Y. M., Ding, L., Jiang, M. M., Ai, Y. S., Mon, C. T., Hou, G. B., Sein, K., and Thant, M. (2020). Direct structural evidence of Indian continental subduction beneath Myanmar. Nat. Commun., 11, 1944. https://doi.org/10.1038/s41467-020-15746-3

Zhu, L. P. (2000). Crustal structure across the San Andreas Fault, Southern California from teleseismic converted waves. Earth Planet. Sci. Lett., 179(1), 183–190. https://doi.org/10.1016/S0012-821X(00)00101-1

[1]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[2]

MingChen Sun, QingLin Zhu, Xiang Dong and JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics. doi: 10.26464/epp2022013

[3]

DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng, 2021: Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method, Earth and Planetary Physics, 5, 149-157. doi: 10.26464/epp2021022

[4]

Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030

[5]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[6]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[7]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[8]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

[9]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[10]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[11]

GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056

[12]

ChengWei Yang, ChengHu Wang, GuiYun Gao, Pu Wang, 2022: Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton, Earth and Planetary Physics. doi: 10.26464/epp2022001

[13]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[14]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[15]

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023

[16]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[17]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[18]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[19]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[20]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A new approach for inversion of receiver function for crustal structure in the depth domain

TianYu Zheng, YuMei He, Yue Zhu