Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

2018, 2(1): 1-14. doi: 10.26464/epp2018001


Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters


Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China


Lunar and Planetary Science Laboratory, Macau University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Macau


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

Corresponding author: BinBin Ni,

Received Date: 2017-07-29
Web Publishing Date: 2018-01-01

Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to LJ3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.

Key words: Jovian radiation belts, whistler-mode chorus, resonant wave-particle interactions, magnetospheric state

Bagenal, F., and Delamere, P. A (2011), Flow of mass and energy in the magnetospheres of Jupiter and Saturn, J. Geophys. Res., 116, A05209, doi:10.1029/2010JA016294. doi: 10.1029/2010JA016294

Berge, G. L., and Gulkis, S. (1976). Earth-based observations of Jupiter: Millimeter to meter wavelengths. Tech. Rep., Univ. of Arizona Press, Tucson, Arizona.222

Bolton, S. J., Janssen, M., Thorne, R., Levin, S., Klein, M., Gulkis, S., Bastian, T., Sault, R., Elachi, C., Hofstadter, M., Bunker, A., Dulk, G., Gudim, E., Hamilton, G., Johnson, W. T. K., Leblanc, Y., Liepack, O., McLeod, R., Roller, J., Roth, L., and West, R. (2002), Ultra-relativistic electrons in Jupiter's radiation belts, Nature, 415 (6875), 987-991. doi: 10.1038/415987a

Burke, B. F., and Franklin, K. L. (1955), Observations of a variable radio source associated with the planet Jupiter, J. Geophys. Res., 60 (2), 213-217. doi: 10.1029/JZ060i002p00213

Carr, T. D., and Gulkis, S. (1969), The magnetosphere of Jupiter, Annu. Rev. Astron. Astrophys., 7, 577–618, doi:10.1146/annurev.aa.07.090169.003045. doi: 10.1146/annurev.aa.07.090169.003045

de Soria-Santacruz, M., Garrett, H. B., Evans, R. W., Jun, I., Kim, W., Paranicas, C., and Drozdov, A. (2016), An empirical model of the high-energy electron environment at Jupiter, J. Geophys. Res. Space Physics, 121, 9732–9743, doi:10.1002/2016JA023059. doi: 10.1002/2016JA023059

Drake, F. D., and Hvatum, S. (1959), Non-thermal microwave radiation from Jupiter, Astron. J., 64, 329-330.

Gerard, E. (1970), Observations of Jupiter at 11.13 cm, Astron. Astrophys., 8, 181.

Gerard, E. (1976), Variation of the radio emission of Jupiter at 21.3 and 6.2 cm wavelength, Astron. Astrophys., 50, 353-360.

Glauert, S. A., and Horne, R. B. (2005), Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res., 110, A04206, doi:10.1029/2004JA010851. doi: 10.1029/2004JA010851

Horne, R. B., Thorne, R. M., Glauert, S. A., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A. (2008), Gyro-resonant electron acceleration at Jupiter, Nature Phys., 4 (4), 301-304. doi: 10.1038/nphys897

Khurana, K. K. (1997), Euler potential models of Jupiter’s magnetospheric field, J. Geophys. Res., 102(6), 11295-11306, doi:10.1029/97JA00563. doi: 10.1029/97JA00563

Klein, M. J. (1976), The variability of the total flux density and polarization of Jupiter's decimetric radio emission, J. Geophys. Res., 81 (19), 3380-3382. doi: 10.1029/JA081i019p03380

Klein, M. J., Thompson, T. J., and Bolton, S. (1989). Systematic observations and correlation studies of variations in the synchrotron radio emission from Jupiter. In Time Variable Phenomena in The Jovian System. NASA Special Publication, vol. 494, pp.151–155.222

Ni, B. B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J. (2008), Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation, Geophys. Res. Lett., 35, L11106, doi:10.1029/2008GL034032. doi: 10.1029/2008GL034032

Ni, B. B., Thorne, R. M., Meredith, N. P., Horne, R. B., and Shprits, Y. Y. (2011), Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves, J. Geophys. Res., 116, A04219, doi:10.1029/2010JA016233. doi: 10.1029/2010JA016233

Ni, B. B., Cao, X., Zou, Z. Y., Zhou, C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., Shi, R., and Xie, L. (2015), Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales, J. Geophys. Res. Space Physics, 120, 7357–7373, doi:10.1002/2015JA021466. doi: 10.1002/2015JA021466

Persoon, A. M., Gurnett, D. A., Kurth, W. S., and Groene, J. B. (2006), A simple scale height model of the electron density in Saturn’s plasmadisk, Geophys. Res. Lett., 33, L18106, doi:10.1029/2006GL027090. doi: 10.1029/2006GL027090

Radhakrishnan, V., and Roberts, J. A. (1960), Polarization and angular extent of the 960-Mc/sec radiation from Jupiter, Phys. Rev. Lett., 4 (10), 493. doi: 10.1103/PhysRevLett.4.493

Santos-Costa, D., and Bourdarie, S. A. (2001), Modeling the inner Jovian electron radiation belt including non-equatorial particles, Planet. Space Sci., 49, 303–312, doi:10.1016/S0032-0633(00)00151-3. doi: 10.1016/S0032-0633(00)00151-3

Santos-Costa, D., Bolton, S. J., Thorne, R. M., Miyoshi, Y., and Levin, S. M. (2008), Investigating the origins of the Jovian decimetric emission’s variability, J. Geophys. Res., 113, A01204, doi:10.1029/2007JA012396. doi: 10.1029/2007JA012396

Shprits, Y. Y., Menietti, J. D., Gu, X., Kim, K. C., and Horne, R. B. (2012), Gyroresonant interactions between the radiation belt electrons and whistler mode chorus waves in the radiation environments of Earth, Jupiter, and Saturn: A comparative study, J. Geophys. Res., 117 (A11), doi:10.1029/2012JA018031. doi: 10.1029/2012JA018031

Tao, X., Thorne, R. M., Horne, R. B., Ni, B., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A. (2011), Importance of plasma injection events for energization of relativistic electrons in the Jovian magnetosphere, J. Geophys. Res., 116(A01), doi:10.1029/2010JA01610. doi: 10.1029/2010JA01610

Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2013). Electron acceleration at Jupiter: Input from cyclotron-resonant interaction with whistler-mode chorus waves. In Ann. Geophys., vol. 31, pp. 1619–1630, Copernicus GmbH.222

Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2014), The origin of Jupiter's outer radiation belt, J. Geophys. Res., 119 (5), 3490-3502, doi:10.1002/2014JA019891. doi: 10.1002/2014JA019891


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020


ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041


DongDong Ni, 2020: Signature of helium rain and dilute cores in Jupiter's interior from empirical equations of state, Earth and Planetary Physics, 4, 111-119. doi: 10.26464/epp2020017


Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics. doi: 10.26464/epp2020068


YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023


Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020060


ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055


XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001


Yang Li, QuanLiang Chen, JianPing Li, WenJun Zhang, MinHong Song, Wei Hua, HongKe Cai, XiaoFei Wu, 2019: The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models, Earth and Planetary Physics, 3, 400-413. doi: 10.26464/epp2019041


Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042


ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026


Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053


Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao