Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Dang, T., Lei, J. H., Wang, W. B., Yan, M. D., Ren, D. X., and Huang, F. Q. (2020). Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse. Earth Planet. Phys., 4(3), 231–237doi: 10.26464/epp2020032

2020, 4(3): 231-237. doi: 10.26464/epp2020032

SPACE PHYSICS : AERONOMY

Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

4. 

High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA

Corresponding author: JiuHou Lei, leijh@ustc.edu.cn

Received Date: 2020-03-18
Web Publishing Date: 2020-05-01

On 21 June 2020, an annular solar eclipse will traverse the low latitudes from Africa to Southeast Asia. The highest latitude of the maximum eclipse obscuration is approximately 30°. This low-latitude solar eclipse provides a unique and unprecedented opportunity to explore the impact of the eclipse on the low-latitude ionosphere–thermosphere (I–T) system, especially in the equatorial ionization anomaly region. In this study, we describe a quantitative prediction of the impact of this upcoming solar eclipse on the I–T system by using Thermosphere–Ionosphere–Electrodynamics General Circulation Model simulations. A prominent total electron content (TEC) enhancement of around 2 TEC units occurs in the equatorial ionization anomaly region even when this region is still in the shadow of the eclipse. This TEC enhancement lasts for nearly 4.5 hours, long after the solar eclipse has ended. Further model control simulations indicate that the TEC increase is mainly caused by the eclipse-induced transequatorial plasma transport associated with northward neutral wind perturbations, which result from eclipse-induced pressure gradient changes. The results illustrate that the effect of the solar eclipse on the I–T system is not transient and linear but should be considered a dynamically and energetically coupled system.

Key words: solar eclipse, ionosphere–thermosphere coupling, equatorial ionization anomaly, model simulation

Afraimovich, E. L., Palamartchouk, K. S., Perevalova, N. P., Chernukhov, V. V., Lukhnev, A. V., and Zalutsky, V. T. (1998). Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett., 25(4), 465–468. https://doi.org/10.1029/98GL00186

Anastassiadis, M., and Matsoukas, D. (1969). Electron content measurements by beacon S-66 satellite during the May 20, 1966, solar eclipse. J. Atmos. Terr. Phys., 31(9), 1217–1222. https://doi.org/10.1016/0021-9169(69)90056-7

Boitman, O. N., Kalikhman, A. D., and Tashchilin, A. V. (1999). The midlatitude ionosphere during the total solar eclipse of March 9, 1997. J. Geophys. Res.: Space Phys., 104(A12), 28197–28206. https://doi.org/10.1029/1999JA900228

Chen, G., Qi, H., Ning, B. Q., Zhao, Z. Y., Yao, M., Deng, Z. X., Li, T., Huang, S., Feng, W. C., … Wu, C. (2013). Nighttime ionospheric enhancements induced by the occurrence of an evening solar eclipse. J. Geophys. Res.: Space Phys., 118(10), 6588–6596. https://doi.org/10.1002/jgra.50551

Curto, J. J., Heilig, B., and Piñol, M. (2006). Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999. J. Geophys. Res.: Space Phys., 111(A7), A07312. https://doi.org/10.1029/2005JA011499

Dang, T., Luan, X. L., Lei, J. H., Dou, X. K., and Wan, W. X. (2016). A numerical study of the interhemispheric asymmetry of the equatorial ionization anomaly in solstice at solar minimum. J. Geophys. Res.: Space Phys., 121(9), 9099–9110. https://doi.org/10.1002/2016JA023012

Dang, T., Lei, J. H., Wang, W. B., Burns, A., Zhang, B. Z., and Zhang, S. R. (2018a). Suppression of the polar tongue of ionization during the 21 August 2017 solar eclipse. Geophys. Res. Lett., 45(7), 2918–2925. https://doi.org/10.1002/2018GL077328

Dang, T., Lei, J. H., Wang, W. B., Zhang, B. Z., Burns, A., Le, H. J., Wu, Q., Ruan, H. B., Dou, X. K., and Wan, W. X. (2018b). Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res.: Space Phys., 123(8), 7040–7050. https://doi.org/10.1029/2018JA025566

Ding, F., Wan, W. X., Ning, B. Q., Liu, L. B., Le, H. J., Xu, G. R., Wang, M., Li, G. Z., Chen, Y. D., … Yang, M. (2010). GPS TEC response to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res.: Space Phys., 115(A7), A07308. https://doi.org/10.1029/2009JA015113

Duncan, R. A. (1960). The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys., 18(2–3), 89–100. https://doi.org/10.1016/0021-9169(60)90081-7

Farges, T., Jodogne, J. C., Bamford, R., Le Roux, Y., Gauthier, F., Vila, P. M., Altadill, D., Sole, J. G., and Miro, G. (2001). Disturbances of the western European ionosphere during the total solar eclipse of 11 August 1999 measured by a wide ionosonde and radar network. J. Atmos. Solar-Terr. Phys., 63(9), 915–924. https://doi.org/10.1016/S1364-6826(00)00195-4

Harding, B. J., Drob, D. P., Buriti, R. A., and Makela, J. J. (2018). Nightside detection of a large-scale thermospheric wave generated by a solar eclipse. Geophys. Res. Lett., 45(8), 3366–3373. https://doi.org/10.1002/2018GL077015

Heelis, R. A., Lowell, J. K., and Spiro, R. W. (1982). A model of the high-latitude ionospheric convection pattern. J. Geophys. Res.: Space Phys., 87(A8), 6339–6345. https://doi.org/10.1029/JA087iA08p06339

Huba, J. D., and Drob, D. (2017). SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett., 44(12), 5928–5935. https://doi.org/10.1002/2017GL073549

Huang, C. R., Liu, C. H., Yeh, K. C., Lin, K. H., Tsai, W. H., Yeh, H. C., and Liu, J. Y. (1999). A study of tomographically reconstructed ionospheric images during a solar eclipse. J. Geophys. Res.: Space Phys., 104(A1), 79–94. https://doi.org/10.1029/98JA02531

Jakowski, N., Stankov, S. M., Wilken, V., Borries, C., Altadill, D., Chum, J., Buresova, D., Boska, J., Sauli, P., … Canderd, L. R. (2008). Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. J. Atmos. Solar-Terr. Phys., 70(6), 836–853. https://doi.org/10.1016/j.jastp.2007.02.016

Le, H. J., Liu, L. B., Yue, X. A., and Wan, W. X. (2008). The midlatitude F2 layer during solar eclipses: Observations and modeling. J. Geophys. Res.: Space Phys., 113(A8), A08309. https://doi.org/10.1029/2007JA013012

Lei, J. H., Dang, T., Wang, W. B., Burns, A., Zhang, B. Z., and Le, H. J. (2018). Long-lasting response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse. J. Geophys. Res.: Space Phys., 123(5), 4309–4316. https://doi.org/10.1029/2018JA025460

Lin, C. H., Li, J. Y., Fang, T. W., Chang, P. Y., Tsai, H. F., Chen, C. H., and Hsiao, C. C. (2007). Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys. Res. Lett., 34(19), L19101. https://doi.org/10.1029/2007gl030741

Luan, X. L., Wang, P., Dou, X. K., and Liu, Y. C. M. (2015). Interhemispheric asymmetry of the equatorial ionization anomaly in solstices observed by COSMIC during 2007–2012. J. Geophys. Res.: Space Phys., 120(4), 3059–3073. https://doi.org/10.1002/2014JA020820

MacPherson, B., González, S. A., Sulzer, M. P., Bailey, G. J., Djuth, F., and Rodriguez, P. (2000). Measurements of the topside ionosphere over Arecibo during the total solar eclipse of February 26, 1998. J. Geophys. Res.: Space Phys., 105(A10), 23055–23067. https://doi.org/10.1029/2000ja000145

Madhav Haridas, M. K., and Manju, G. (2012). On the response of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15 January 2010. J. Geophys. Res.: Space Phys., 117(A01), A01302. https://doi.org/10.1029/2011JA016695

Moffett, R. J., and Hanson, W. B. (1965). Effect of ionization transport on the equatorial F-region. Nature, 206(4985), 705–706. https://doi.org/10.1038/206705a0

Nayak, C., and Yiğit, E. (2018). GPS-TEC observation of gravity waves generated in the ionosphere during 21 August 2017 total solar eclipse. J. Geophys. Res.: Space Phys., 123(1), 725–738. https://doi.org/10.1002/2017JA024845

Qian, L. Y., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., Richmond, A. D., Roble, R. G., Solomon, S. C., and Wang, W. B. (2014). The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. In J. Huba, et al. (Eds.), Modeling the Ionosphere-Thermosphere System (pp. 73–83). Washington, DC: John Wiley & Sons. https://doi.org/10.1002/9781118704417.ch7222

Richmond, A. D., Ridley, E. C., and Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett., 19(6), 601–604. https://doi.org/10.1029/92GL00401

Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr., 47(2), 191–212. https://doi.org/10.5636/jgg.47.191

Roble, R. G., Emery, B. A., and Ridley, E. C. (1986). Ionospheric and thermospheric response over Millstone Hill to the May 30, 1984, annular solar eclipse. J. Geophys. Res.: Space Phys., 91(A2), 1661–1670. https://doi.org/10.1029/JA091iA02p01661

Roble, R. G., Ridley, E. C., Richmond, A. D., and Dickinson, R. E. (1988). A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett., 15(12), 1325–1328. https://doi.org/10.1029/GL015i012p01325

Salah, J. E., Oliver, W. L., Foster, J. C., Holt, J. M., Emery, B. A., and Roble, R. G. (1986). Observations of the May 30, 1984, annular solar eclipse at Millstone Hill. J. Geophys. Res.: Space Phys., 91(A2), 1641–1660. https://doi.org/10.1029/JA091iA02p01651

Singh, L., Tyagi, T. R., Somayajulu, Y. V., Vijayakumar, P. N., Dabas, R. S., Loganadham, B., Ramakrishna, S., Rama Rao, P. V. S., Dasgupta, A., … Hartmann, G. K. (1989). A multi-station satellite radio beacon study of ionospheric variations during total solar eclipses. J. Atmos. Terr. Phys., 51(4), 271–278. https://doi.org/10.1016/0021-9169(89)90078-0

St.-Maurice, J.-P., Ambili, K. M., and Choudhary, R. K. (2011). Local electrodynamics of a solar eclipse at the magnetic equator in the early afternoon hours. Geophys. Res. Lett., 38(4), L04102. https://doi.org/10.1029/2010GL046085

Sun, Y. Y., Liu, J. Y., Lin, C. C. H., Lin, C. Y., Shen, M. H., Chen, C. H., Chen, C. H., and Chou, M. Y. (2018). Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017. Geophys. Res. Lett., 45(2), 538–544. https://doi.org/10.1002/2017GL075926

Wang, W. B., Dang, T., Lei, J. L., Zhang, S. R., Zhang, B. Z., and Burns, A. (2019). Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res.: Space Phys., 124(4), 2978–2991. https://doi.org/10.1029/2018ja025479

Zhang, S. R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., and Frissell, N. A. (2017a). Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017. Earth Planet. Phys., 1(1), 72–76. https://doi.org/10.26464/epp2017011

Zhang, S. R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., and Vierinen, J. (2017b). Ionospheric bow waves and perturbations induced by the 21 August 2017 Solar Eclipse. Geophys. Res. Lett., 44(24), 12067–12073. https://doi.org/10.1002/2017GL076054

[1]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[2]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[3]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[4]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[5]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[6]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics. doi: 10.26464/epp2020035

[7]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[8]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[9]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[10]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[11]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[12]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[13]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[14]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[15]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[16]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[17]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[18]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[19]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[20]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse

Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang