Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu , 2022: Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA, Earth and Planetary Physics. http://doi.org/10.26464/epp2022030

doi: 10.26464/epp2022030

Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA

1 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

2 Key Laboratory of Computing Geodynamics, Chinese Academy of Sciences, Beijing 100049, China

3 Institute of Geophysics, China Earthquake Administration, Beijing 100081, China

4 Applied Physics and Applied Mathematics Department, Columbia University, New York 10027, USA

5 Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China

6 Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China

7 University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Bojing Zhu ,

The role of Moonquake hazard distribution (peak ground acceleration, PGA; instrumental intensity Moonquakes scale, IIM) on the co-seismic moment is critical for understanding the lunar quake (including the shallow and deep lunar quakes). Here, we use Lagrangian analysis methods and lunar surface image extraction-calibration technologies to investigate the relationship between the co-seismic induced ground motion (PGA and IIM) and the rolling trajectories of the lunar boulder on the lunar slope. First, the inverse algorithm, the validation of IIM (00.18g_m), the certain critical rolling condition between the PGA and the IIM, and the falling boulder are obtained. Then, the correlation between IIM scale (scale I, ~ 0 m⁄s^2 ; scale II, ~ 0.0017g_m; scale III, 0.0017g_m0.014g_m; scale IV, 0.014 g_m0.039g_m; scale V, 0.039 g_m0.092g_m; scale VI, 0.092g_m0.18g_m) and different parameters (e.g., lunar slope 1°44°; lasting time, t, 0.12s ; fixed PGA coefficient, the ratio of the vertical component to the horizontal component of PGA amplitude, A_y0⁄A_x0 =2) is simulated and discussed. All these results play an important role in understanding lunar quakes' mechanism and the internal structure evolution. The elevation extraction-calibration technologies with the particular software for automatically recognizing lunar-terrain observational images and data (e.g., high-resolution satellite lunar imagery from NASA's lunar reconnaissance orbiter narrow-angle camera) driven IIM with observational trajectories of the lunar boulder are presented in Part II and Part III of this three-paper series studies, respectively. We anticipate our studies to be a key point, give new insights for understanding the role of PGA and IIM, and help assess the stabilities of the rovers (e.g., Zhurong rover, Chang'e series rover) in China's Moon and Mars exploration program.

Key words:

Ahrens, C. J., Paige, D. A., Eubanks, T. M., Blase, W. P., Mesick, K. E., Zimmerman, W., Petro, N., Hayne, P. O., and Price, S. (2021). Small penetrator instrument concept for the advancement of lunar surface science. Planet. Sci. J., 2(1), 38. https://doi.org/10.3847/psj/abda4f Bickel, V. T., Honniball, C. I., Martinez, S. N., Rogaski, A., Sargeant, H. M., Bell, S. K., Czaplinski, E. C., Farrant, B. E., Harrington, E. M., ... Kring, D. A. (2019). Analysis of lunar boulder tracks: implications for trafficability of pyroclastic deposits. J. Geophys. Res. Planets, 124(5), 1296-1314. https://doi.org/10.1029/2018JE005876 Bickel, V. T., Aaron, J., Manconi, A., Loew, S., and Mall, U. (2020). Impacts drive lunar rockfalls over billions of years. Nat Commun. 11, 2862. https://doi.org/10.1038/s41467-020-16653-3 Buratti, B. J. (2001). Moon. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (3rd ed, pp. 161-172). San Diego: Academic Press https://doi.org/10.1016/B0-12-227410-5/00460-9 Cheng, H. H., Zhu, B. J., Yuen, D. A., and Shi, Y. L. (2017). Submicron size-scale mapping of carbonate effective elastic properties from FIB-SEM images and finite element method. Sci. China Earth Sci, 60(3), 557-575. https://doi.org/10.1007/s11430-015-0132-9 Czaplinski, E. C., Harrington, E. M., Bell, S. K., Tolometti, G. D., Farrant, B. E., Bickel, V. T., Honniball, C. I., Martinez, S. N., Rogaski, A., ... Kring, D. A. (2021). Human-assisted sample return mission at the Schrödinger basin, lunar far side, using a new geologic map and rover traverses. Planet. Sci. J., 2(2), 51. https://doi.org/10.3847/PSJ/abdb34/pdf Díaz-Martínez, I., Cónsole-Gonella, C., Citton, P., and De Valais, S. (2021). Half a Century after the first Bootprint on the lunar surface: the ichnological side of the moon. Earth Sci. Rev., 212, 103452. https://doi.org/10.1016/j.earscirev.2020.103452 He, S. B. (2003). China's moon project change: stratagem and prospects. Adv. Space Res., 31(11), 2353-2358 https://doi.org/10.1016/S0273-1177(03)00547-7 Kumar, P. S., Sruthi, U., Krishna, N., Lakshmi, K. J. P., Menon, R., Krishna, A. B. G., Kring, D. A., Head, J. W., Goswami, J. N., and Kumar, A. S. K. (2016). Recent shallow moonquake and impact-triggered boulder falls on the moon: new insights from the Schrödinger basin. J. Geophys. Res. Planets, 121(2), 147-179. https://doi.org/10.1002/2015JE004850 Li, B., Ling, Z. C., Zhang, J., Chen, J., Liu, C. Q., and Bi, X. Y. (2018). Geological mapping of lunar highland crater Lalande: topographic configuration, morphology and cratering process. Planet. Space Sci., 151, 85-96. https://doi.org/10.1016/j.pss.2017.11.007 Manafizad, A. N., Pradhan, B., and Abdullahi, S. (2016). Estimation of Peak Ground Acceleration (PGA) for Peninsular Malaysia using geospatial approach. IOP Conf. Ser. Earth Eviron. Sci., 37, 012069. https://doi.org/10.1088/1755-1315/37/1/012069 Mohanty, R., Kumar, P. S., Raghukanth, S. T. G., and Lakshmi, K. J. P. (2020). The long-lived and recent seismicity at the lunar orientale basin: evidence from morphology and formation ages of boulder avalanches, tectonics, and seismic ground motion. J. Geophys. Res. Planets, 125(12), e2020JE006553. https://doi.org/10.1029/2020JE006553 Pernet-Fisher, J. F., McDonald, F. E., Zeigler, R. A., and Joy, K. H. (2019). 50 years on: Legacies of the Apollo Program. Astron. Geophys., 60(4), 22-28. https://doi.org/10.1093/astrogeo/atz163 Qian , Y. Q., Xiao, L., Wang, Q., Head, J. W., Yang, R. H., Kang, Y., Van Der Bogert, C. H., Hiesinger, H., Lai, X. M., ... Zhao, S. Y. (2021). China's Chang'e-5 landing site: geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett., 561(1), 116855. https://doi.org/10.1016/j.epsl.2021.116855 Sargeant, H. M., Bickel, V. T., Honniball, C. I., Martinez, S. N., Rogaski, A., Bell, S. K., Czaplinski, E. C., Farrant, B. E., Harrington, E. M., ... Kring, D. A. (2020). Using boulder tracks as a tool to understand the bearing capacity of permanently shadowed regions of the moon. J. Geophys. Res. Planetary, 125(2), e2019JE006157. https://doi.org/10.1029/2019JE006157 Sun, Z. Z. (2021). Technologies for Deep Space Exploration (pp. 1-617). Singapore: Springer. https://doi.org/10.1007/978-981-15-4794-2 Trugman, D. T., and Shearer, P. M. (2018). Strong correlation between stress drop and peak ground acceleration for recent M1-4 earthquakes in the San Francisco Bay Area. Bull. Seismol. Soc. Am., 108(2), 929-945. https://doi.org/10.1785/0120170245 Watters, T. R., Weber, R. C., Collins, G. C., Howley, I. J., Schmerr, N. C., and Johnson, C. L. (2019). Shallow seismic activity and young thrust faults on the moon. Nat. Geosci., 12(6), 411-417. https://doi.org/10.1038/s41561-019-0362-2 Xiao, Z. Y., Zeng, Z. X., Ding, N., and Molaro, J. (2013). Mass wasting features on the moon–how active is the lunar surface? Earth Planet. Sci. Lett., 376, 1-11. https://doi.org/10.1016/j.epsl.2013.06.015 Xiao, Z. Y., and Xu, Z. Q. (2021). Planetary tectonics: indicatorsto earth’s evolution. Acta Geol. Sin. (in Chinese), 95(1), 259-275. https://doi.org/10.19762/j.cnki.dizhixuebao.2021003 Xie, M. G., Xiao, Z. Y., Zhang, X. Y., and Xu, A. A. (2020). The provenance of regolith at the Chang'e-5 candidate landing region. J. Geophys. Res. Planets, 125(5), e2019JE006112. https://doi.org/10.1029/2019JE006112 Zhang, L. H., and Wu, W. R. (2018). The development overview and prospect of lunar relay communication satellite system. J. Deep Space Exp. (in Chinese), 5(6), 497-505, 568. https://doi.org/10.15982/j.issn.2095-7777.2018.06.001 Zhao, N. (2020). Characteristics of moonquake and its comparison with earthquakeormalsize. Chin. J. Space Sci. (in Chinese), 40(2), 264-272. https://doi.org/10.11728/cjss2020.02.264 Zhu, B. J., Shi, Y. L., Sukop, M. C., Li, Y. B., and Qin, T. Y. (2009). Analysis of 3D fluid driven crack propagation problem in Co-seismic slip under P- and S-waves by hybrid hypersingular integral method. Comput. Methods Appl. Mech. Eng., 198(30-32), 2446-2469. https://doi.org/10.1016/j.cma.2009.02.031 Zhu, B. J., Yuen, D. A., Shi, Y. L., and Cheng, H. H. (2015). Submicron volume roughness & asperity contact friction model for principle slip surface in flash heating process. J. Earth Sci., 26(1), 96-107. https://doi.org/10.1007/s12583-015-0514-2

[1]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[2]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[3]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[4]

GuangXing Ding, JiaWei Li, XiaoXin Zhang, Fei He, LingPing He, KeFei Song, Liang Sun, Shuang Dai, ShiJie Liu, Bo Chen, Chao Yu, XiuQing Hu, SongYan Gu, ZhongDong Yang, Peng Zhang, 2021: Wide-field aurora imager onboard Fengyun satellite: Data products and validation, Earth and Planetary Physics, 5, 73-78. doi: 10.26464/epp2021003

[5]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[6]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[7]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[8]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[9]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[10]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[11]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[12]

Yue Shen, QiuYu Wang, WeiLong Rao, WenKe Sun, 2022: Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China contient, Earth and Planetary Physics, 6, 96-107. doi: 10.26464/epp2022009

[13]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA

Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu