Citation:
Nanan Balan, LiBo Liu, HuiJun Le,
2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275.
doi: 10.26464/epp2018025
2018, 2(4): 257-275. doi: 10.26464/epp2018025
A brief review of equatorial ionization anomaly and ionospheric irregularities
1. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
2. | Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China |
3. | College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China |
Following a brief history and progress of ionospheric research, this paper presents a brief review of the recent developments in the understanding of two major phenomena in low and mid latitude ionosphere—the equatorial ionization anomaly (EIA) and involved equatorial plasma fountain (EPF) and ionospheric irregularities. Unlike the easy-to-understand misinterpretations, the EPF involves field perpendicularE×B plasma drift and field-aligned plasma diffusion acting together and plasma flowing in the direction of the resultant at all points along the field lines at all altitudes. The EIA is formed mainly from the removal of plasma from around the equator by the upward E×B drift creating the trough and consequently the crests with small accumulation of plasma at the crests when the crests are within ~±20° magnetic latitudes and no accumulation when they are beyond ~±25° magnetic latitudes. The strong EIA under magnetically active conditions arises from the simultaneous impulsive action of eastward prompt penetration electric field and equatorward neutral wind. Intense ionospheric irregularities develop in the post-sunset bottom-side equatorial ionosphere when it rises to high altitudes, and evolve nonlinearly into the topside. Pre-reversal enhancement (PRE) of the vertical upward E×B drift and its fluctuations amplified during PRE provide the driving force and seed, with neutral wind and gravity waves being the primary sources. At low solar activity especially in summer when fast varying PRE is absent, the slow varying gravity waves including large scale waves (LSW) seem to act as both driver and seed for weak irregularities. At mid latitudes, the irregularities are weak and associated with medium scale traveling ionospheric disturbances (MSTIDs). A low latitude minimum in the occurrence of the irregularities at March equinox predicted by theoretical models is identified. The minimum occurs on the poleward side of the EIA crest and shifts equatorward from ~25° magnetic latitudes at high solar activity to below 17° at low solar activity.
Aarons, J. (1991). The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms. Radio Sci., 26(4), 1131-1149. https://doi.org/10.1029/91RS00473 |
Aarons, J. (1993). The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci. Rev., 63(3-4), 209-243. https://doi.org/10.1007/BF00750769 |
Abdu, M. A., de Medeiros, R. T., Bittencourt, J. A., and Batista, I. S. (1983). Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere. J. Geophys. Res., 88(A1), 399-402. https://doi.org/10.1029/JA088iA01p00399 |
Abdu, M. A., de Paula, E. R., Batista, I. S., Reinisch, B. W., Matsuoka, M. T., Camargo, P. O., Veliz, O., Denardini, C. M., Sobral, J. H. A., … de Siqueira P. M. (2008). Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm. J. Geophys. Res., 113(A7), A07313. https://doi.org/10.1029/2007JA012844 |
Ajith, K. K., Ram, S. T., Yamamoto, M., Yokoyama, T., Gowtam, V. S., Otsuka, Y., Tsugawa, T., and Niranjan, K. (2015). Explicit characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010-2012. J. Geophys. Res. Space Phys., 120(2), 1371-1382. https://doi.org/10.1002/2014JA020878 |
Anderson, D. N. (1973). A theoretical study of the ionospheric F region equatorial anomaly-I. Theory. Planet. Space Sci., 21(3), 409-419. https://doi.org/10.1016/0032-0633(73)90040-8 |
Anderson, D. N., and Redmon, R. J. (2017). Forecasting scintillation activity and equatorial spread F. Space Weather, 15(3), 495-502. https://doi.org/10.1002/2016SW001554 |
Appleton, E., and Barnett, M. (1925). Local reflection of wireless waves from the upper atmosphere. Nature, 115(2888), 333-334. https://doi.org/10.1038/115333a0 |
Appleton, E. V. (1946). Two anomalies in the ionosphere. Nature, 157(3995), 691. https://doi.org/10.1038/157691a0 |
Aswathy, R. P., and Manju, G. (2018). Hindcasting of equatorial spread F using seasonal empirical models. J. Geophys. Res., 123(2), https://doi.org/10.1002/2017JA025036 |
Aveiro, H. C., Hysell, D. L., Park, J., and Lühr, H. (2011). Equatorial spread F-related currents: three-dimensional simulations and observations. Geophys. Res. Lett., 38(21), L21103. https://doi.org/10.1029/2011GL049586 |
Bailey, G. J., and Balan, N. (1996). A low latitude Ionosphere-plasmasphere model. In R. W. Schunk (Ed.), STEP Hand Book of Ionospheric Models (pp. 173). Logan: Utah State University.222 |
Balachandran Nair, R., Balan, N., Bailey, G. J., and Rao, P. B. (1992). Spectra of the ac electric fields in the post-sunset F-region at the magnetic equator. Planet. Space Sci., 40(5), 655-662. https://doi.org/10.1016/0032-0633(92)90006-A |
Balan, N., Jayachandran, B., Balachandran Nair, R., Namboothiri, S. P., Bailey, G. J. and Rao, P. B. (1992). HF Doppler observations of vector plasma drifts in the evening F-region at the magnetic equator. J. Atoms. Terr. Phys., 54(11-12), 1545-1554. https://doi.org/10.1016/0021-9169(92)90162-E |
Balan, N., and Bailey, G. J. (1995). Equatorial plasma fountain and its effects: possibility of an additional layer. J. Geophys. Res., 100(A11), 21421-21432. https://doi.org/10.1029/95JA01555 |
Balan, N, Bailey, G. J., Abdu, M. A., Oyama, K. I., Richards, P. G., MacDougall, J., and Batista, I. S. (1997). Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer. J. Geophys. Res., 102(A2), 2047-2056. https://doi.org/10.1029/95JA02639 |
Balan, N., Batista, I. S., Abdu, M. A., MacDougall, J., and Bailey, G. J. (1998). Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere. J. Geophys. Res., 103(A12), 29169-29181. https://doi.org/10.1029/98JA02823 |
Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S., and Bailey, G. J. (2009). Super plasma fountain and equatorial ionization anomaly during penetration electric field. J. Geophys. Res., 114(A3), A03310. https://doi.org/10.1029/2008JA013768 |
Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto M., and Bailey, G. J. (2010). A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophy. Res., 115(A2), A02304. https://doi.org/10.1029/2009JA014515 |
Balan, N., Yamamoto, M., Liu, J. Y., Otsuak, Y., Liu, H., and Lühr, H. (2011). New aspects of thermospheric and ionospheric storms revealed by CHAMP. J. Geophys. Res., 116(A7), A07305. https://doi.org/10.1029/2010JA016399 |
Balan, N., Otsuka, Y., Nishioka, M., Liu, J. Y., and Bailey, G. J. (2013). Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res., 118(5), 2660-2669. https://doi.org/10.1002/jgra.50275 |
Balan, N., Maruyama, T., Patra, A. K., and Narayanan, V. L. (2018). A minimum in the latitude variation of spread-F at March equinox. Prog. Earth Planet. Sci., 5, 27. https://doi.org/10.1186/s40645-018-0180-y |
Balsley, B. B., Haerendel, G., and Greenwald, R. A. (1972). Equatorial spread F: Recent observations and a new interpretation. J. Geophys. Res., 77(28), 5625-5628. https://doi.org/10.1029/JA077i028p05625 |
Basu, S., and Basu, S. (1981). Equatorial scintillation-a review. J. Atmos. Terr. Phys., 43(5-6), 473-489. https://doi.org/10.1016/0021-9169(81)90110-0 |
Basu, S., Basu, S., MacKenzie, E., Bridgwood, C., Valladares, C. E., Groves, K. M., and Carrano, C. (2010). Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Sci., 45(5), RS5009. https://doi.org/10.1029/2009RS004343 |
Beynon, W. J. G. (1975). Marconi, radio waves, and the ionosphere. Radio Sci., 10(7), 657-664. https://doi.org/10.1029/RS010i007p00657 |
Bhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., and Sheehan, R. (2001). Dynamics of equatorial F region irregularities from spaced receiver scintillation observations. Geophys. Res. Lett., 28(1), 119-122. https://doi.org/10.1029/2000GL012288 |
Blanc, M., and Richmond, A. D. (1980). The ionospheric disturbance dynamo. J. Geophys. Res., 85(A4), 1669-1686. https://doi.org/10.1029/JA085iA04p01669 |
Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. Terr. Magn. Atmos. Elec., 43(3), 249-256. https://doi.org/10.1029/TE043i003p00249 |
Booker, H. G. (1956). Turbulence in the ionosphere with applications to meteor-trails, radio-star scintillation, auroral radar echoes, and other phenomena. J. Gephys. Res., 61(4), 673-705. https://doi.org/10.1029/JZ061i004p00673 |
Bowman, G. G. (1990). A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr., 42(2), 109-138. https://doi.org/10.5636/jgg.42.109 |
Breit, G., and Tuve, M. A. (1925). A radio method of estimating the height of the conducting layer. Nature, 116(2914), 357. https://doi.org/10.1038/116357a0 |
Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and Su, S. Y. (2004). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res., 109(A12), A12301. https://doi.org/10.1029/2004JA010583 |
Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc., 43(1), 26-45. https://doi.org/10.1088/0959-5309/43/1/305 |
Chen, Y. D., Liu, L. B., Le, H. J., Wan, W. X., and Zhang, H. (2016). Equatorial ionization anomaly in the low-latitude topside ionosphere: Local time evolution and longitudinal difference. J. Geophys. Res., 121(7), 7166-7182. https://doi.org/10.1002/2016JA022394 |
Dungey, J. W. (1956). Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys., 9(5-6), 304-310. https://doi.org/10.1016/0021-9169(56)90148-9 |
Egedal, J. (1947). The magnetic diurnal variation of the horizontal force near the magnetic equator. Terr. Magn. Atmos. Electr., 52(4), 449-451. https://doi.org/10.1029/TE052i004p00449 |
Emmert, J. T., Richmond, A. D., and Drob, D. P. (2010). A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J. Geophys. Res., 115(A8), A08322. https://doi.org/10.1029/2010JA015326 |
Farley, D. T., Balsley, B. B., woodman, R. F., and McClure, L. P. (1970). Equatorial spread F: Implications of VHF radar observations. J. Geophys. Res., 75(34), 7199-7216. https://doi.org/10.1029/JA075i034p07199 |
Fejer, B. G., Farley, D. T., Woodman, R. F., and Calderon, C. (1979). Dependence of equatorial F region vertical drifts on season and solar cycle. J. Geophys. Res., 84(A10), 5792-5796. https://doi.org/10.1029/JA084iA10p05792 |
Fejer, B. G., de Paula, E. R., Gonzáles, S. A., and Woodman, R. F. (1991). Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res., 96(A8), 13901-13906. https://doi.org/10.1029/91JA01171 |
Fuller-Rowell, T. J., Codrescu, M. V., Moffett, R. J., and Quegan, S. (1994). Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res., 99(A3), 3893-3914. https://doi.org/10.1029/93JA02015 |
Fukao, S., Kelley, M. C., Shirakawa, T., Takami, T., Yamamoto, M., Tsuda, T., and Kato, S. (1991). Turbulent upwelling of the mid-latitude ionosphere: 1. Observational results by the MU radar. J. Geophys. Res., 96(A3), 3725-3746. https://doi.org/10.1029/90JA02253 |
Graham, G. (1724-1725). An account of observations made of the variation of the horizontal needle at London, in the latter part of the year 1722, and beginning of 1723. By Mr. George Graham, Watchmaker, F. R. S. Philos. Trans., 33, 96-107.222 |
Hanson, W. B., and Moffett, R. J. (1966). Ionization transport effects in the equatorial F region. J. Geophys. Res., 71(23), 5559-5572. https://doi.org/10.1029/JZ071i023p05559 |
Haerendel, G. (1972). Rayleigh-Taylor instability as cause of equatorial spread-F. Trans. Am. Geophys. Union, 53(11), 1082. |
Hamza, A. M. (1999). Perkins instability revisited. J. Geophys. Res., 104(A10), 22567-22575. https://doi.org/10.1029/1999JA900307 |
Heaviside, O. (1902). Telegraph Theory. 10th ed. Chicago: Encyclopedia Britannica.222 |
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Fraser, G. J., Tsuda, T., Vial, F., and Vincent, R. (1996). Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(3), 1421-1447. https://doi.org/10.1016/0021-9169(95)00122-0 |
Heelis, R. A., Kendall, P. C., Moffett, R. J., Windle, D. W., and Rishbeth, H. (1974). Electrical coupling of the E- and F-regions and its effects on F-region drifts and winds. Planet. Space Sci., 22(5), 743-756. https://doi.org/10.1016/0032-0633(74)90144-5 |
Huang, C. S., and Kelley, M. C. (1996). Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh-Taylor instability. J. Geophys. Res., 101(A1), 293-302. https://doi.org/10.1029/95JA02210 |
Huang, C. M., Chen, M. Q., and Liu, J. Y. (2010). Ionospheric positive storm phases at the magnetic equator close to sunset. J. Geophys. Res., 115(A7), A07315. https://doi.org/10.1029/2009JA014936 |
Huba, J. D., Joice, G., Sazykin, S., Wolf, R., and Spiro, R. (2005). Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys. Res. Lett., 32(23), L23101. https://doi.org/10.1029/2005GL024162 |
Huba, J. D., Joyce, G., and Krall, J. (2008). Three-dimensional equatorial spread F modeling. Geophys. Res. Lett., 35(10), L10102. https://doi.org/10.1029/2008GL033509 |
Hysell, D. L., Larsen, M. F., Swenson, C. M., Barjatya, A., Wheeler, T. F., Sarango, M. F., Woodman, R. F., and Chau, J. L. (2005). Onset conditions for equatorial spread F determined during EQUIS II. Geophys. Res. Lett., 32(24), L24104. https://doi.org/10.1029/2005GL024743 |
Hysell, D. L., Larsen, M. F., Swenson, C. M., and Wheeler, T. F. (2006). Shear flow effects at the onset of equatorial spread F. J. Geophys. Res., 111(A11), A11317. https://doi.org/10.1029/2006JA011963 |
Hysell, D. L., Jafari D. L., Milla R., Meriwether M. A., J. W. (2014). Data-driven numerical simulations of equatorial spread F in the Peruvian sector. J. Geophys. Res. Space Phys., 119, 3815-3827. doi:10.1002/2014JA019889 |
Jayachandran, B., Balan, N., Namboothiri, S. P., and Rao, P. B. (1987). HF Doppler observations of vertical plasma drifts in the evening F region at the equator. J. Geophys. Res., 92(A10), 11253-11256. https://doi.org/10.1029/JA092iA10p11253 |
Jayachandran, B., Balan, N., Rao, P. B., Sastri, J. H., and Bailey, G. J. (1993). HF Doppler and ionosonde observations on the onset conditions of equatorial spread F. J. Geophys. Res., 98(A8), 13741-13750. https://doi.org/10.1029/93JA00302 |
Kelley, M. C., Larsen, M. F., LaHoz, C., and McClure, J. P. (1981). Gravity wave initiation of equatorial spread F: a case study. J. Geophys. Res., 86(A11), 9087-9100. https://doi.org/10.1029/JA086iA11p09087 |
Kelley, M. C., and Fukao, S. (1991). Turbulent upwelling of the mid-latitude ionosphere, II: theoretical framework. J. Geophys. Res., 96, 3747-3753. |
Kelley, M. C., Vlasov, M. N., Foster, J. C., and Coster, A. J. (2004). A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys. Res. Lett., 31(19), L19809. https://doi.org/10.1029/2004GL020875 |
Kelley, M. C., Makela, J. J., de La Beaujardière, O., and Retterer, J. (2011). Convective ionospheric storms: a review. Rev. Geophys., 49(2), RG2003. https://doi.org/10.1029/2010RG000340 |
Kelley, M. C., and Dao, E. V. (2017). Evidence for gravity wave seeding of convective ionospheric storms possibly initiated by thunderstorms. J. Geophys. Res. Space Phys., 122(5), 4046-4052. https://doi.org/10.1002/2017JA024707 |
Kennelly, A. E. (1902). On the elevation of the electrically-conducting strata of the Earth’s atmosphere. Electr. World Engineer, 39, 473. |
Kikuchi, T., Araki, T., Maeda, H., and Maekawa, K. (1978). Transmission of polar electric fields to the equator. Nature, 273(5664), 650-651. https://doi.org/10.1038/273650a0 |
Kudeki, E., and Bhattacharyya, S. (1999). Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F. J. Geophys. Res., 104(A12), 28163-28170. https://doi.org/10.1029/1998JA900111 |
Kudeki, E., Akgiray, A., Milla, M. A., Chau, J. L., and Hysell, D. L. (2007). Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J. Atmos. Solar Terr. Phys., 69(17-18), 2416-2427. https://doi.org/10.1016/j.jastp.2007.04.012 |
Li, G. Z., Ning, B. Q., and Yuan, H. (2007). Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planet. Space, 59(4), 279-285. https://doi.org/10.1186/BF03353105 |
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C., and Su, S. Y. (2005). Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res., 110(A12), A12312. https://doi.org/10.1029/2005JA011304 |
Liu, H., and Lühr, H. (2005). Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res., 110(A9), A09S29. https://doi.org/10.1029/2004JA010908 |
Liu, L. B., He, M. S., Yue, X. A., Ning, B. Q., and Wan, W. X. (2010). Ionosphere around equinoxes during low solar activity. J. Geophys. Res., 115(A9), A09307. https://doi.org/10.1029/2010JA015318 |
Lu, G., Goncharenko, L. P., Nicolls, M. J., Maute, A. I., Coster, A. J., and Paxton, L. J. (2012). Ionospheric and thermospheric variations associated with prompt penetration electric fields. J. Geophys. Res., 117(A8), A08312. https://doi.org/10.1029/2012JA017769 |
Madhav Haridas, M. K., Manju, G., and Pant, T. K. (2013). First observational evidence of the modulation of the threshold height h’Fc for the occurrence of equatorial spread F by neutral composition changes. J. Geophys. Res. Space Phys., 118(6), 3540-3545, https://doi.org/10.1002/jgra.50331 |
Makela, J. J., and Otsuka, Y. (2012). Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1-4), 419-440. https://doi.org/10.1007/s11214-011-9816-6 |
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U., and Skoug, R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 " Halloween Storms”. Geophys. Res. Lett., 32(12), L12S02. https://doi.org/10.1029/2004GL021467 |
Maruyama, T. (1990). E×B instability in the F-region at low-to midlatitudes. Planet. Space Sci., 38(2), 273-285. https://doi.org/10.1016/0032-0633(90)90092-5 |
Martyn, D. F. (1955). Theory of height and ionization density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion, and total drift. In Proceedings, Cambridge Conference (pp. 254). London: Physical Society.222 |
Mitra, S. K. (1946). Geomagnetic control of region F2 of the ionosphere. Nature, 158(4019), 668-669. https://doi.org/10.1038/158668a0 |
Moffett, R. J. (1979). The equatorial anomaly in the electron distribution of the terrestrial F-region. Fund. Cosmic Phys., 4, 313. |
Moffett, R. J., and Hanson, W. B. (1965). Effect of ionization transport on the equatorial F-region. Nature, 206(4985), 705-706. https://doi.org/10.1038/206705a0 |
Namba, S., and Maeda, K. I. (1939). Radio Wave Propagation. Tokyo: Corona.222 |
Namboothiri, S. P., Balan, N., and Rao, P. B. (1989). Vertical plasma drifts in the F region at the magnetic equator. J. Geophys. Res., 94(A9), 12055-12060. https://doi.org/10.1029/JA094iA09p12055 |
Narayanan, V. L., Shiokawa, K., Otsuka, Y., and Saito, S. (2014). Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low-latitude limit. J. Geophys. Res., 119(11), 9268-9282. https://doi.org/10.1002/2014JA020368 |
Oyama, K. I., Abdu, M. A., Balan, N., Bailey, G. J., Watanabe, S., Takahashi, T., de Paula, E. R., Batista, I. S., Isoda, F., and Oya, H. (1997). High electron temperature associated with the prereversal enhancement in the equatorial ionosphere. J. Geophys. Res., 102(A1), 417-424. https://doi.org/10.1029/96JA02705 |
Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geohys. Res. Let., 29(15), 43-1-43-4. https://doi.org/10.1029/2002GL015347 |
Otsuka, Y., Shiokawa, K., Nishioka, M., and Effendy, V. (2012). VHF radar observations of post-midnight F-region field-aligned irregularities over Indonesia during solar minimum. Indian J. Radio Space Phys., 41(2), 199-207. |
Patra, A. K., Taori, A., Chaitanya, P. P., and Sripathi, S. (2013). Direct detection of wavelike spatial structure at the bottom of the F region and its role on the formation of equatorial plasma bubble. J. Geophys. Res., 118(3), 1196-1202. https://doi.org/10.1002/jgra.50148 |
Perkins, F. (1973). Spread F and ionospheric currents. J. Geophys. Res., 78(1), 218-226. https://doi.org/10.1029/JA078i001p00218 |
Picone, J. M., Hedin, A. E., Drob, D., and Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res., 107(A12), 1468. https://doi.org/10.1029/2002JA009430 |
Prakash, S. (1999). Production of electric field perturbations by gravity wave winds in the E region suitable for initiating equatorial spread F. J. Geophys. Res., 104(A5), 10051-10069. https://doi.org/10.1029/1999JA900028 |
Prolss, G. W. (1995). Ionospheric F-region storms. In H. Volland (Ed.), Handbook of Atmospheric Electrodynamics (pp. 195–245). Boca Raton: CRC Press.222 |
Raghavarao, R., Wharton, L. E., Spencer, N. W., Mayr, H. G., and Brace, L. H. (1991). An equatorial temperature and wind anomaly (ETWA). Geophys. Res. Letts., 18(7), 1193-1196. https://doi.org/10.1029/91GL01561 |
Rajaram, G. (1977). Structure of the equatorial F-region, topside and bottomside - A review. J. Atmos. Terr. Phys., 39(9-10), 1125-1144. https://doi.org/10.1016/0021-9169(77)90021-6 |
Ratcliffe, J. A. (1972). Introduction to the Ionosphere and Magnetosphere. Cambridge: Cambridge University Press.222 |
Rastogi, R. G. (1977). Geomagnetic storms and electric fields in the equatorial ionosphere. Nature, 268(5619), 422-424. https://doi.org/10.1038/268422a0 |
Rastogi, R. G., Mullen, J. P., and MacKenzie, E. (1981). Effect of geomagnetic activity on equatorial radio VHF scintillations and spread F. J. Geophys. Res., 86(A5), 3661-3664. https://doi.org/10.1029/JA086iA05p03661 |
Rishbeth, H., Lyon, A. J., and Peart, M. (1963). Diffusion in the equatorial F layer. J. Geophys. Res., 68(9), 2559-2569. https://doi.org/10.1029/JZ068i009p02559 |
Rishbeth, H. (1971). The F-layer dynamo. Planet. Space Sci., 19(2), 263-267. https://doi.org/10.1016/0032-0633(71)90205-4 |
Sahai, Y., Becker-Guedes, F., Fagundes, P. R., de Abreu, A. J., de Jesus, R., Pillat, V. G., Abalde, J. R., Martinis, C. R., Brunini, C., … Otsuka Y. (2009). Observations of the F-region ionospheric irregularities in the South American sector during the October 2003 " Halloween Storms”. Ann. Geophys., 27(12), 4463-4477. https://doi.org/10.5194/angeo-27-4463-2009 |
Scannapieco, A. J., and Ossakow, S. L. (1976). Nonlinear equatorial spread F. Geophys. Res. Lett., 3(8), 451-454. https://doi.org/10.1029/GL003i008p00451 |
Sekar, R., Suhasini, R., and Raghavarao, R. (1995). Evolution of plasma bubbles in the equatorial F region with different seeding conditions. Geophys. Res. Lett., 22(8), 885-888. https://doi.org/10.1029/95GL00813 |
Shiokawa, K., Otsuka, Y., Ejiri, M. K., Sahai, Y., Kadota, T., Ihara, C., Ogawa, T., Igarashi, K., Miyazaki, S., and Saito, A. (2002). Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances. Earth Planet. Space, 54(1), 57-62. https://doi.org/10.1186/BF03352421 |
Souza, J. R., Asevedo Jr, W. D., dos Santos, P. C. P., Petry, A., Bailey, G. J., Batista, I. S., and Abdu, M. A. (2013). Longitudinal variation of the equatorial ionosphere: Modeling and experimental results. Adv. Space Res., 51(4), 654-660. https://doi.org/10.1016/j.asr.2012.01.023 |
Sreeja, V., Ravindran, S., Pant, T. K., Devasia, C. V., and Paxton, L. J. (2009). Equatorial and low-latitude ionosphere-thermosphere system response to the space weather event of August 2005. J. Geophys. Res., 114(A12), A12307. https://doi.org/10.1029/2009JA014491 |
Stening, R. J. (1992). Modelling the low latitude F region. J. Atmos. Terr. Phys., 54(11-12), 1387-1412. https://doi.org/10.1016/0021-9169(92)90147-D |
Stolle, C., Michaelis, I., and Rauberg, J. (2016). The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites. Earth Planet. Space, 68, 110. https://doi.org/10.1186/s40623-016-0494-1 |
Su, S. Y., Liu, C. H., Ho, H. H., and Chao, C. K. (2006). Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions. J. Geophys. Res., 111(A6), A06305. https://doi.org/10.1029/2005JA011330 |
Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res., 101(A12), 26875-26891. https://doi.org/10.1029/96JA00682 |
Taylor, J. E. (1902-1903). Characteristics of electric earth-current disturbances, and their origin. Proc. R. Soc. London, 71, 225-227. |
Thampi, S. V., Ravindran, E., Pant, T. K., Devasia, C. V., Sreelatha, P., and Sridharan, R. (2006). Deterministic prediction of post-sunset ESF based on the strength and asymmetry of EIA from ground based TEC measurements: Preliminary results. Geophys. Res. Lett., 33(13), L13103. https://doi.org/10.1029/2006GL026376 |
Tsunoda, R. T. (1985). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res., 90, 447-456. |
Tsunoda, R. T. (2006). On the coupling of layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res., 111(A11), A11304. https://doi.org/10.1029/2006JA011630 |
Tsunoda, R. T., and Cosgrove, R. B. (2001). Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 28(22), 4171-4174. https://doi.org/10.1029/2001GL013245 |
Tsunoda, R. T., Bubenik, D. M., Thampi, S. V., and Yamamoto, M. (2010). On large-scale wave structure and equatorial spread F without a post-sunset rise of the F layer. Geophys. Res. Lett., 37(7), L07105. https://doi.org/10.1029/2009GL042357 |
Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., and Ravindran, S. (2008). Local time dependant response of postsunset ESF during geomagnetic storms. J. Geophys. Res., 113(A7), A07310. https://doi.org/10.1029/2007JA012922 |
Tulasi Ram, S., Yamamoto, M., Tsunoda, R. T., Chau, H. D., Hoang, T. L., Damtie, B., Wassaie, M., Yatini, C. Y., Manik, T., and Tsugawa, T. (2014). Characteristics of large-scale wave structure observed from African and Southeast Asian longitudinal sectors. J. Geophys. Res., 119(3), 2288-2297. https://doi.org/10.1002/2013JA019712 |
Viggiano, A. A., and Arnold, F. (1995). Ion chemistry and composition of the atmosphere. In H. Volland (Ed.), Handbook of Atmospheric Electrodynamics. Boca Raton: CRC Press.222 |
Whalen, J. A. (2002). Dependence of equatorial bubbles and bottomside spread F on season, magnetic activity, and E×B drift velocity during solar maximum. J. Geophys. Res., 107(A2), SIA 3-1-SIA 3-9. https://doi.org/10.1029/2001JA000039 |
Woodman, R. F., and La Hoz, C. (1976). Radar observations of F region equatorial irregularities. J. Geophys. Res., 81(31), 5447-5466. https://doi.org/10.1029/JA081i031p05447 |
Woodman, R. F. (2009). Spread F—an old equatorial aeronomy problem finally resolved?. Ann. Geophys., 27(5), 1915-1934. https://doi.org/10.5194/angeo-27-1915-2009 |
Weber, E. J., Buchau, J., Eather, R. H., and Mende, S. B. (1978). North-south aligned equatorial airglow depletions. J. Geophys. Res., 83(A2), 712-716. https://doi.org/10.1029/JA083iA02p00712 |
Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res. Space Phys., 119(12), 10474-10482. https://doi.org/10.1002/2014JA020708 |
Yokoyama, T., and Stolle, C. (2017). Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field. Space Sci. Rev., 206(1-4), 495-519. https://doi.org/10.1007/s11214-016-0295-7 |
Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res., 87(A1), 151-166. https://doi.org/10.1029/JA087iA01p00151 |
[1] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[2] |
Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032 |
[3] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[4] |
LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011 |
[5] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[6] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[7] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[8] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[9] |
ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041 |
[10] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[11] |
YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009 |
[12] |
Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)