Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Singh, D. (2020). Impact of surface Albedo on Martian photochemistry. Earth Planet. Phys., 4(3), 206–211doi: 10.26464/epp2020025

2020, 4(3): 206-211. doi: 10.26464/epp2020025


Impact of surface Albedo on Martian photochemistry

Physical Research Laboratory, Ahmedabad, India

Corresponding author: Deepak Singh,

Received Date: 2019-10-21
Web Publishing Date: 2020-05-01

Solar energy is the primary driving force behind a planet’s climate system, and surface albedo plays a key role in determining the energy budget of the planet. Coupling the Snow, Ice, and Aerosol Radiation (SNICAR) with the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model (MGCM) to create a new coupled model leads to an approximately 4% drop in the net CO2 ice deposition on Mars. Newly simulated surface albedo affects the concentration of gaseous species in the Martian atmosphere (condensation-sublimation cycle). The new set-up also impacts the solar energy available in the atmosphere. These two effects together lead to subsequent and significant changes in other chemical species in the Martian atmosphere. Compared with results of the MGCM model alone, in the new coupled model CO2 (gas) and O3 show a drop of about 1.17% and 8.59% in their respective concentrations, while H2O (vapor) and CO show an increase of about 13.63% and 0.56% in their respective concentrations. Among trace species, OH shows a maximum increase of about 29.44%, while the maximum drop of 11.5% is observed in the O concentration. Photochemically neutral species such as Ar and N2 remain unaffected by the albedo changes.

Key words: Mars; Albedo; snow; photochemistry; climate modelling

Atreya, S. K., and Gu, Z. G. (1995). Photochemistry and stability of the atmosphere of Mars. Adv. Space Res., 16(6), 57–68.

Barker, E. S., Schorn, R. A., Woszczyk, A., Tull, R. G., and Little, S. J. (1970). Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season. Science, 170(3964), 1308–1310.

Barth, C. A., and Hord, C. W. (1971). Mariner ultraviolet spectrometer: Topography and polar cap. Science, 173(3993), 197–201.

Barth, C. A., Hord, C. W., Stewart, A. I., Lane, A. L., Dick, M. L., and Anderson, G. P. (1973). Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science, 179(4075), 795–796.

Bony, S., Colman, R., R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., … Webb, M. J. (2006). How well do we understand and evaluate climate change feedback processes?. J. Climate, 19(15), 3445–3482.

Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J. (2001). Martian dust storms: 1999 Mars orbiter camera observations. J. Geophys. Res.: Planets, 106(E10), 23653–23687.

Clancy, R. T., Wolff, M. J., Lefèvre, F., Cantor, B. A., Malin, M. C., and Smith, M. D. (2016). Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, 266, 112–133.

Encrenaz, T., Greathouse, T. K., Richter, M. J., Lacy, J. H., Fouchet, T., Bézard, B., Lefèvre, F., Forget, F., and Atreya, S. K. (2011). A stringent upper limit to SO2 in the Martian atmosphere. Astron. Astrophys., 530, A37.

Farmer, C. B., Davies, D. W., Holland, A. L., LaPorte, D. D., and Doms, P. E. (1977). Mars: Water vapor observations from the Viking orbiters. J. Geophys. Res., 82(28), 4225–4248.

Farmer, C. B., and Doms, P. E. (1979). Global seasonal variation of water vapor on Mars and the implications for permafrost. J. Geophys. Res.: Solid Earth, 84(B6), 2881–2888.

Fast, K., Kostiuk, T., Espenak, F., Annen, J., Buhl, D., Hewagama, T., A'Hearn, M. F., Zipoy, D., Livengood, T. A., … Schmülling, F. (2006). Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anticorrelation with water vapor. Icarus, 181(2), 419–431.

Fedorova, A., Korablev, O., Bertaux, J. L., Rodin, A., Kiselev, A., and Perrier, S. (2006). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. J. Geophys. Res.: Planets, 111(E9), E09S08.

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J. (2007). Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos, 112(D11), D11202.

Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J. (2009). Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9(7), 2481–2497.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., … Rummukainen, M. (2013). Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741–866). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.222

Forget, F., Hourdin, F., and Talagrand, O. (1998). CO2 snowfall on Mars: Simulation with a general circulation model. Icarus, 131(2), 302–316.

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res.: Planets, 104(E10), 24155–24176.

Franz, H. B., Trainer, M. G., Wong, M. H., Mahaffy, P. R., Atreya, S. K., Manning, H. L. K., and Stern, J. C. (2015). Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover. Planet. Space Sci., 109-110, 154–158.

Franz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Becker, R. H., Benna, M., Conrad, P. G., Eigenbrode, J. L., … Wong, M. H. (2017). Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Planet. Space Sci., 138, 44–54.

González-Galindo, F., López-Valverde, M. A., Angelats i Coll, M., and Forget, F. (2005). Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. J. Geophys. Res.: Planets, 110(E9), E09008.

Jakosky, B. M., and Farmer, C. B. (1982). The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res.: Solid Earth, 87(B4), 2999–3019.

Kaplan, L. D., Connes, J., and Connes, P. (1969). Carbon monoxide in the Martian atmosphere. Astrophys. J., 157, L187.

Krasnopolsky, V. A. (2015). Variations of carbon monoxide in the Martian lower atmosphere. Icarus, 253, 149–155.

Labs, D., Neckel, H. (1968). The radiation of the solar photosphere from 2000 Å to 100 µm. Zeitschrift fur Astrophysik, 69, 1.222

Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F. (2004). Three-dimensional modeling of ozone on Mars. J. Geophys. Res.: Planets, 109(E7), E07004.

Madeleine, J. B., Forget, F., Millour, E., Montabone, L., and Wolff, M. J. (2011). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res.: Planets, 116(E11), E11010.

McConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M., Wiens, R. C., Maurice, S., Gasnault, O., Lasue, J., … Bell III, J. F. (2018). Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307, 294–326.

McElroy, M. B., and Donahue, T. M. (1972). Stability of the Martian atmosphere. Science, 177(4053), 986–988.

Modak, A., Sheel, V., and Montmessin, F. (2019). Retrieval of Martian ozone and dust from SPICAM spectrometer for MY27–MY28. J. Earth Syst. Sci., 128(6), 144.

Mumma, M. J., Villanueva, G. L., Novak, R. E., Hewagama, T., Bonev, B. P., DiSanti, M. A., Mandell, A. M. and Smith, M. D. (2009). Strong release of methane on Mars in northern summer 2003. Science, 323(5917), 1041–1045.

Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., and Clancy, R. T. (1994). A photochemical model of the Martian atmosphere. Icarus, 111(1), 124–150.

Navarro, T., Madeleine, J. B., Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A. (2014). Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. Planets, 119(7), 1479–1495.

Pankine, A. A., Tamppari, L. K., and Smith, M. D. (2010). MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer. Icarus, 210(1), 58–71.

Perrier, S., Bertaux, J. L., Lefèvre, F., Lebonnois, S., Korablev, O., Fedorova, A., and Montmessin, F. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res.: Planets, 111(E9), E09S06.

Pottier, A., Forget, F., Montmessin, F., Navarro, T., Spiga, A., Millour, E., Szantai, A., and Madeleine, J. B. (2017). Unraveling the Martian water cycle with high-resolution global climate simulations. Icarus, 291, 82–106.

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., … Taylor, K. E. (2007). Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.222

Shell, K. M., Kiehl, J. T., and Shields, C. A. (2008). Using the radiative kernel technique to calculate climate feedbacks in NCAR's community atmospheric model. J. Climate, 21(10), 2269–2282.

Singh, D., Flanner, M. G., and Perket, J. (2015). The global land shortwave cryosphere radiative effect during the MODIS era. The Cryosphere, 9(6), 2057–2070.

Singh, D., and Flanner, M. G. (2016). An improved carbon dioxide snow spectral albedo model: Application to Martian conditions. J. Geophys. Res.: Planets, 121(10), 2037–2054.

Singh, D., Flanner, M. G., and Millour, E. (2018). Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR. J. Geophys. Res.: Planets, 123(3), 780–791.

Smith, M. D. (2002). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res.: Planets, 107(E11), 25-1–25-19.

Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167(1), 148–165.

Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields, C. A. (2008). Quantifying climate feedbacks using radiative kernels. J. Climate, 21(14), 3504–3520.

Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K. (1989). Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94(D13), 16,287–16,301.

Willame, Y., Vandaele, A. C., Depiesse, C., Lefèvre, F., Letocart, V., Gillotay, D., and Montmessin, F. (2017). Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra. Planet. Space Sci., 142, 9–25.

Winton, M. (2006). Surface albedo feedback estimates for the AR4 climate models. J. Climate, 19(3), 359–365.


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics. doi: 10.26464/epp2020045


Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009


XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics. doi: 10.26464/epp2020035


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010


Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006


Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062


JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics. doi: 10.26464/epp2020038


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Impact of surface Albedo on Martian photochemistry

Deepak Singh