Citation:
Zhang, Z. H., Yuan, Z. G., Huang, S. Y., Yu, X. D., Xue, Z. X., Deng, D., and Huang, Z. (2022). Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer. Earth Planet. Phys., 6(5), 465–473. http://doi.org/10.26464/epp2022041
doi: 10.26464/epp2022041
Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer
School of Electronic Information, Wuhan University, Wuhan 430072, China |
Kinetic Alfvén waves (KAWs), with a strong parallel disturbed electric field, play an important role in energy transport and particle acceleration in the magnetotail. On the basis of high-resolution observations of the Magnetospheric Multiscale (MMS) Mission, we present a detailed description of the acceleration process of electrons by KAWs in the plasma sheet boundary layer (PSBL). The MMS observed strong electromagnetic disturbances carrying a parallel disturbed electric field with an amplitude of up to 8 mV/m. The measured ratio of the electric to magnetic field perturbations was larger than the local Alfvén speed and was enhanced as the frequency increased, consistent with the theoretical predictions for KAWs. This evidence indicates that the electromagnetic disturbances should be identified as KAWs. During the KAWs, the energy flux of electrons at energies above 1 keV in the parallel and anti-parallel directions are significantly enhanced, implying occurrences of electron beams at higher energies. Additionally, the KAWs became more electrostatic-like and filled with high-frequency ion acoustic waves. The energy enhancement of electron beams is in accordance with the derived work done with the observed parallel disturbed electric field of KAWs, indicating electron acceleration caused by KAWs. Therefore, these results provide direct evidence of electron acceleration by KAWs embodying electrostatic ion acoustic waves in the PSBL.
Angelopoulos, V., Chapman, J. A., Mozer, F. S., Scudder, J. D., Russell, C. T., Tsuruda, K., Mukai, T., Hughes, T. J., and Yumoto, K. (2002). Plasma sheet electromagnetic power generation and its dissipation along auroral field lines. J. Geophys. Res.:Space Phys., 107(A8), 1181. https://doi.org/10.1029/2001JA900136 |
Baumjohann, W., Paschmann, G., Sckopke, N., Cattell, C. A., and Carlson, C. W. (1988). Average ion moments in the plasma sheet boundary layer. J. Geophys. Res.:Space Phys., 93(A10), 11507–11520. https://doi.org/10.1029/JA093iA10p11507 |
Chaston, C. C., Phan, T. D., Bonnell, J. W., Mozer, F. S., Acuña, M., Goldstein, M. L., Balogh, A., Andre, M., Reme, H., and Fazakerley, A. (2005). Drift-kinetic Alfvén waves observed near a reconnection X line in the earth’s magnetopause. Phys. Rev. Lett., 95(6), 065002. https://doi.org/10.1103/PhysRevLett.95.065002 |
Chaston, C. C., Genot, V., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., Strangeway, R. J., Lund, E. J., and Hwang, K. J. (2006). Ionospheric erosion by Alfvén waves. J. Geophys. Res.:Space Phys., 111(A3), A03206. https://doi.org/10.1029/2005JA011367 |
Chaston, C. C., Johnson, J. R., Wilber, M., Acuna, M., Goldstein, M. L., and Reme, H. (2009). Kinetic Alfvén wave turbulence and transport through a reconnection diffusion region. Phys. Rev. Lett., 102(1), 015001. https://doi.org/10.1103/PhysRevLett.102.015001 |
Chaston, C. C., Bonnell, J. W., Clausen, L., and Angelopoulos, V. (2012). Energy transport by kinetic-scale electromagnetic waves in fast plasma sheet flows. J. Geophys. Res.:Space Phys., 117(A09202). https://doi.org/10.1029/2012JA017863 |
Chaston, C. C., Bonnell, J. W., Wygant, J. R., Mozer, F., Bale, S. D., Kersten, K., Breneman, A. W., Kletzing, C. A., Kurth, W. S., … MacDonald, E. A. (2014). Observations of kinetic scale field line resonances. Geophys. Res. Lett., 41(2), 209–215. https://doi.org/10.1002/2013GL058507 |
Chen, C. X., and Wang, C. P. (2019). Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail. Earth Planet. Phys., 3(6), 474–480. https://doi.org/10.26464/epp2019049 |
Chen, C. X. (2021). Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail. Earth Planet. Phys., 5(4), 337–347. https://doi.org/10.26464/epp2021035 |
Chen, L., Wu, D. J., and Huang, J. (2013). Kinetic Alfvén wave instability driven by field-aligned currents in a low-β plasma. J. Geophys. Res.:Space Phys., 118(6), 2951–2957. https://doi.org/10.1002/jgra.50332 |
Cramer, N. F. (2001). The Physics of Alfvén Waves. Berlin: Wiley-VCH Verlag.222 |
Dai, L. (2009). Collisionless magnetic reconnection via Alfvén eigenmodes. Phys. Rev. Lett., 102(24), 245003. https://doi.org/10.1103/PhysRevLett.102.245003 |
Dai, L., Wang, C., Zhang, Y. C., Lavraud, B., Burch, J., Pollock, C., and Torbert, R. B. (2017). Kinetic Alfvén wave explanation of the Hall fields in magnetic reconnection. Geophys. Res. Lett., 44(2), 634–640. https://doi.org/10.1002/2016GL071044 |
Dombeck, J., Cattell, C., Wygant, J. R., Keiling, A., and Scudder, J. (2005). Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer. J. Geophys. Res.:Space Phys., 110(A12), A12S90. https://doi.org/10.1029/2005JA011269 |
Duan, S. P., Liu, Z. X., and Angelopoulos, V. (2012). Observations of kinetic Alfvén waves by THEMIS near a substorm onset. Chin. Sci. Bull., 57(12), 1429–1435. https://doi.org/10.1007/s11434-012-4973-x |
Duan, S. P., Dai, L., Wang, C., Liang, J., Lui, A. T. Y., Chen, L. J., He, Z. H., Zhang, Y. C., and Angelopoulos, V. (2016). Evidence of kinetic Alfvén eigenmode in the near-earth magnetotail during substorm expansion phase. J. Geophys. Res.:Space Phys., 121(5), 4316–4330. https://doi.org/10.1002/2016JA022431 |
Duan, S. P., Dai, L., Wang, C., He, Z. H., Cai, C. L., Zhang, Y. C., Dandouras, I., Reme, H., André, M., and Khotyaintsev, Y. V. (2017). Oxygen ions O+ energized by kinetic Alfvén eigenmode during dipolarizations of intense substorms. J. Geophys. Res.:Space Phys., 122(11), 11256–11273. https://doi.org/10.1002/2017JA024418 |
Ergun, R. E., Tucker, S., Westfall, J., Goodrich, K. A., Malaspina, D. M., Summers, D., Wallace, J., Karlsson, M., Mack, J., … Cully, C. M. (2016). The axial double probe and fields signal processing for the MMS mission. Space Sci. Rev., 199(1-4), 167–188. https://doi.org/10.1007/s11214-014-0115-x |
Fu, H. S., Cao, J. B., Yang, B., and Lu, H. Y. (2011). Electron loss and acceleration during storm time: the contribution of wave–particle interaction, radial diffusion, and transport processes. J. Geophys. Res.:Space Phys., 116(A10), A10210. https://doi.org/10.1029/2011JA016672 |
Fu, H. S., Cao, J. B., Cully, C. M., Khotyaintsev, Y. V., Vaivads, A., Angelopoulos, V., Zong, Q. G., Santolík, O., Macúšová, E., … Zhima, Z. (2014). Whistler-mode waves inside flux pileup region: structured or unstructured?. J. Geophy. Res.:Space Phys., 119(11), 9089–9100. https://doi.org/10.1002/2014JA020204 |
Gary, S. P. (1986). Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility and helicity. J. Plasma Phys., 35(3), 431–447. https://doi.org/10.1017/S0022377800011442 |
Gomberoff, L., and Elgueta, R. (1991). Resonant acceleration of alpha particles by ion cyclotron waves in the solar wind. J. Geophys. Res.:Space Phys., 96(A6), 9801–9804. https://doi.org/10.1029/91JA00613 |
He, J. S., Tu, C. Y., Marsch, E., and Yao, S. (2012a). Reproduction of the observed two-component magnetic helicity in solar wind turbulence by a superposition of parallel and oblique Alfvén waves. Astrophys. J., 749(1), 86. https://doi.org/10.1088/0004-637X/749/1/86 |
He, J. S., Tu, C. Y., Marsch, E., and Yao, S. (2012b). Do oblique Alfvén/ion-cyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length?. Astrophys J., 745(1), L8. https://doi.org/10.1088/2041-8205/745/1/L8 |
Hollweg, J. V. (1999). Kinetic Alfvén wave revisited. J. Geophys. Res.:Space Phys., 104(A7), 14811–14819. https://doi.org/10.1029/1998JA900132 |
Huang, H. T., Yu, Y. Q., Dai, L., and Wang, T. Y. (2018). Kinetic Alfvén waves excited in two-dimensional magnetic reconnection. J. Geophys. Res.:Space Phys., 123(8), 6655–6669. https://doi.org/10.1029/2017JA025071 |
Huang, S. Y., Yuan, Z. G., Ni, B., Zhou, M., Fu, H. S., Fu, S., Deng, X. H., Pang, Y., Li, H. M., … Yu, X. D. (2015). Observations of large-amplitude electromagnetic waves and associated wave–particle interactions at the dipolarization front in the earth’s magnetotail: a case study. J. Atmos. Sol. Terr. Phys., 129, 119–127. https://doi.org/10.1016/j.jastp.2015.05.007 |
Huang, S. Y., Wei, Y. Y., Yuan, Z. G., Jiang, K., Deng, X. H., Xu, S. B., He, L. H., Zhang, J., and Zhang, Z. H. (2020). Electron jets in the terrestrial magnetotail: a statistical overview. Astrophys. J., 896(1), 67. https://doi.org/10.3847/1538-4357/ab8eb0 |
Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S., and Russell, C. T. (2003). The global morphology of wave Poynting flux: powering the aurora. Science, 299(5605), 383–386. https://doi.org/10.1126/science.1080073 |
Keiling, A., Parks, G. K., Wygant, J. R., Dombeck, J., Mozer, F. S., Russell, C. T., Streltsov, A. V., and Lotko, W. (2005). Some properties of Alfvén waves: observations in the tail lobes and the plasma sheet boundary layer. J. Geophys. Res.:Space Phys., 110(A10), A10S11. https://doi.org/10.1029/2004JA010907 |
Keiling, A. (2009). Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: a review. Space Sci. Rev., 142(1-4), 73–156. https://doi.org/10.1007/s11214-008-9463-8 |
Kennel, C. F., and Petschek, H. E. (1966). Limit on stably trapped particle fluxes. J. Geophys. Res., 71(1), 1–28. https://doi.org/10.1029/JZ071i001p00001 |
Kletzing, C. A. (1994). Electron acceleration by kinetic Alfvén waves. J. Geophys. Res.:Space Phys., 99(A6), 11095–11103. https://doi.org/10.1029/94JA00345 |
Lindqvist, P. A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau, D., Needell, G., Turco, S., Dors, I., … Tucker, S. (2016). The spin-plane double probe electric field instrument for MMS. Space Sci. Rev., 199(1-4), 137–165. https://doi.org/10.1007/s11214-014-0116-9 |
Lysak, R. L., and Lotko, W. (1996). On the kinetic dispersion relation for shear Alfvén waves. J. Geophys. Res.:Space Phys., 101(A3), 5085–5094. https://doi.org/10.1029/95JA03712 |
Lysak, R. L. (1998). The relationship between electrostatic shocks and kinetic Alfvén waves. Geophys. Res. Lett., 25(12), 2089–2092. https://doi.org/10.1029/98GL00065 |
Moya, P. S., Pinto, V. A., Viñas, A. F., Sibeck, D. G., Kurth, W. S., Hospodarsky, G. B., and Wygant, J. R. (2015). Weak kinetic Alfvén waves turbulence during the 14 November 2012 geomagnetic storm: van Allen probes observations. J. Geophys. Res.:Space Phys., 120(7), 5504–5523. https://doi.org/10.1002/2014JA020281 |
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., … Zeuch, M. (2016). Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev., 199(1-4), 331–406. https://doi.org/10.1007/s11214-016-0245-4 |
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., … Richter, I. (2016). The magnetospheric multiscale magnetometers. Space Sci. Rev., 199(1-4), 189–256. https://doi.org/10.1007/s11214-014-0057-3 |
Sonnerup, B. U. Ö., and Scheible, M. (1998). Minimum and maximum variance analysis. ISSI Scientific Reports Series(1), 185–220. |
Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., … Wahlund, J. E. (2000). Small scale Alfvénic structure in the aurora. Space Sci. Rev., 92(3), 423–533. https://doi.org/10.1023/A:1005207202143 |
Voitenko, Y., and Goossens, M. (2006). Energization of plasma species by intermittent kinetic Alfvén waves. Space Sci. Rev., 122(1-4), 255–270. https://doi.org/10.1007/s11214-006-8212-0 |
Wahlund, J. E., Louarn, P., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P. O., and Holmgre, G. (1994). On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophys. Res. Lett., 21(17), 1831–1834. https://doi.org/10.1029/94GL01289 |
Wang, X. Y., Huang, S. Y., Allen, R. C., Fu, H. S., Deng, X. H., Zhou, M., Burch, J. L., and Torbert, R. B. (2017). The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission. J. Geophys. Res.:Space Phys., 122(8), 8228–8240. https://doi.org/10.1002/2017JA024237 |
Wygant, J. R., Keiling, A., Cattell, C. A., Lysak, R. L., Temerin, M., Mozer, F. S., Kletzing, C. A., Scudder, J. D., Streltsov, V., … Russell, C. T. (2002). Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet boundary layer. J. Geophys. Res.:Space Phys., 107(A8), 1201. https://doi.org/10.1029/2001JA900113 |
Young, D. T., Burch, J. L., Gomez, R. G., De Los Santos, A., Miller, G. P., Wilson IV, P., Paschalidis, N., Fuselier, S. A., Pickens, K., … Webster, J. M. (2016). Hot plasma composition analyzer for the magnetospheric multiscale mission. Space Sci. Rev., 199(1-4), 407–470. https://doi.org/10.1007/s11214-014-0119-6 |
Yuan, Z. G., Deng, X. H., Pang, Y., Li, S. Y., and Wang, J. F. (2007). Alfven waves in a plasma sheet boundary layer associated with near-tail magnetic reconnection. Chin. Phys. Lett., 24(4), 1122–1124. https://doi.org/10.1088/0256-307X/24/4/075 |
[1] |
ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035 |
[2] |
Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042 |
[3] |
ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033 |
[4] |
Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052 |
[5] |
YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035 |
[6] |
BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001 |
[7] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[8] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
[9] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[10] |
YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052 |
[11] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
[12] |
ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011 |
[13] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[14] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[15] |
YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021 |
[16] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036 |
[17] |
Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022 |
[18] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[19] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
[20] |
Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)