Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Miao, S. Y., Zhang, H. J., Tan, Y. Y., and Lin, Y. (2021). Development of a new high resolution waveform migration location method and its applications to induced seismicity. Earth Planet. Phys., 5(6), 520–531. http://doi.org/10.26464/epp2021056

2021, 5(6): 520-531. doi: 10.26464/epp2021056

SOLID EARTH: SEISMOLOGY

Development of a new high resolution waveform migration location method and its applications to induced seismicity

1. 

Laboratory of Seismology and Earth’s Interior; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China

3. 

Key Lab of Submarine Geosciences and Prospecting Techniques MOE, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China

4. 

Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China

Corresponding author: HaiJiang Zhang, zhang11@ustce.edu.cn

Received Date: 2020-10-13
Web Publishing Date: 2021-10-26

Locating seismic events is a central task for earthquake monitoring. Compared to arrival-based location methods, waveform-based location methods do not require picking phase arrivals and are more suitable for locating seismic events with noisy waveforms. Among waveform-based location methods, one approach is to stack different attributes of P and S waveforms around arrival times corresponding to potential event locations and origin times, and the maximum stacking values are assumed to indicate the correct event location and origin time. In this study, to obtain a high-resolution location image, we improve the waveform-based location method by applying a hybrid multiplicative imaging condition to characteristic functions of seismic waveforms. In our new stacking method, stations are divided into groups; characteristic functions of seismic waveforms recorded at stations in the same group are summed, and then multiplied among groups. We find that this approach can largely eliminate the cumulative effects of noise in the summation process and thus improve the resolution of location images. We test the new method and compare it to three other stacking methods, using both synthetic and real datasets that are related to induced seismicity occurring in petroleum/gas production. The test results confirm that the new stacking method can provide higher-resolution location images than those derived from currently used methods.

Key words: induced earthquake; seismic location; seismic monitoring

Allen, R. (1982). Automatic phase pickers: their present use and future prospects. Bull. Seismol. Soc. Am., 72(6B), S225–S242. https://doi.org/10.1785/BSSA07206B0225

Artman, B., Podladtchikov, I., and Witten, B. (2010). Source location using time-reverse imaging. Geophys. Prospect., 58(5), 861–873. https://doi.org/10.1111/j.1365-2478.2010.00911.x

Beskardes, G. D., Hole, J. A., Wang, K., Michaelides, M., Wu, Q., Chapman, M. C., Davenport, K. K., Brown, L. D., and Quiros, D. A. (2018). A comparison of earthquake backprojection imaging methods for dense local arrays. Geophys. J. Int., 212(3), 1986–2002. https://doi.org/10.1093/gji/ggx520

Bouchon, M. (1981). A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Am., 71(4), 959–971. https://doi.org/10.1785/BSSA0710040959

Close, D., Perez, M., Goodway, B., and Purdue, G. (2012). Integrated workflows for shale gas and case study results for the Horn River Basin, British Columbia, Canada. Lead. Edge, 31(5), 556–569. https://doi.org/10.1190/tle31050556.1

Douglas, A. (1967). Joint epicentre determination. Nature, 215(5096), 47–48. https://doi.org/10.1038/215047a0

Duncan, P. M. (2005). Is there a future for passive seismic. First Break, 23(6), 111–115. https://doi.org/10.3997/1365-2397.23.6.26577

Dyer, B. C., Schanz, U., Ladner, F., Häring, M. O., and Spillman, T. (2008). Microseismic imaging of a geothermal reservoir stimulation. Lead. Edge, 27(7), 856–869. https://doi.org/10.1190/1.2954024

Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., and Keller, W. (2010). Comparison of surface and borehole locations of induced seismicity. Geophys. Prospect., 58(5), 809–820. https://doi.org/10.1111/j.1365-2478.2010.00867.x

Fink, M. (1999). Time-reversed acoustics. Sci. Am., 281(5), 91-97. https://www.jstor.org/stable/26058488222

Gajewski, D., and Tessmer, E. (2005). Reverse modelling for seismic event characterization. Geophys. J. Int., 163(1), 276–284. https://doi.org/10.1111/j.1365-246X.2005.02732.x

Ge, M. C. (2005). Efficient mine microseismic monitoring. Int. J. Coal Geol., 64(1-2), 44–56. https://doi.org/10.1016/j.coal.2005.03.004

Gharti, H. N., Oye, V., Roth, M., and Kühn, D. (2010). Automated microearthquake location using envelope stacking and robust global optimization. Geophysics, 75(4), MA27–MA46. https://doi.org/10.1190/1.3432784

Grechka, V., De La Pena, A., Schisselé-Rebel, E., Auger, E., and Roux, P. F. (2015). Relative location of microseismicity. Geophysics, 80(6), WC1–WC9. https://doi.org/10.1190/geo2014-0617.1

Grigoli, F., Cesca, S., Vassallo, M., and Dahm, T. (2013). Automated seismic event location by travel-time stacking: an application to mining induced seismicity. Seismol. Res. Lett., 84(4), 666–677. https://doi.org/10.1785/0220120191

Jia, K., Zhou, S. Y., Zhuang, J. C., Jiang, C. S., Guo, Y. C., Gao, Z. H., Gao, S. S., Ogata, Y., and Song, X. D. (2020). Nonstationary background seismicity rate and evolution of stress changes in the Changning salt mining and shale-gas hydraulic fracturing region, Sichuan Basin, China. Seismol. Res. Lett., 91(4), 2170–2181. https://doi.org/10.1785/0220200092

Kao, H., and Shan, S. J. (2004). The source-scanning algorithm: mapping the distribution of seismic sources in time and space. Geophys. J. Int., 157(2), 589–594. https://doi.org/10.1111/j.1365-246X.2004.02276.x

Kao, H., and Shan, S. J. (2007). Rapid identification of earthquake rupture plane using source-scanning algorithm. Geophys. J. Int., 168(3), 1011–1020. https://doi.org/10.1111/j.1365-246X.2006.03271.x

Kersey, A. D. (2000). Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry. IEICE Trans. Electron., E83-C(3), 400–404.

Kwiatek, G., Bohnhoff, M., Martínez-Garzón, P., Bulut, F., and Dresen, G. (2013). High resolution reservoir characterization using induced seismicity and state of the art waveform processing techniques. First Break, 31(7), 81–88. https://doi.org/10.3997/1365-2397.31.7.70359

Lakings, J. D. , Duncan, P. M. , Neale, C. , and Theiner, T. (2006). Surface based microseismic monitoring of a hydraulic fracture well stimulation in the Barnett shale. In SEG Technical Program Expanded Abstracts 2006 (pp. 605-608). Society of Exploration Geophysicists.222

Le Calvez, J. H. , Craven, M. E. , Klem, R. C. , Baihly, J. D. , Bennett, L. A. , and Brook, K. (2007). Real-time microseismic monitoring of hydraulic fracture treatment: A tool to improve completion and reservoir management. In SPE Hydraulic Fracturing Technology Conference. Texas: Society of Petroleum Engineers.222

Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H. (2017). Fault reactivation and earthquakes with magnitudes of up to Mw4 7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Sci. Re., 7(1), 7971. https://doi.org/10.1038/s41598-017-08557-y

Lei, X. L., Wang, Z. W., and Su, J. R. (2019). Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China. Earth Planet. Phys., 3(6), 510–525. https://doi.org/10.26464/epp2019052

Li, J. L., Kuleli, H. S., Zhang, H. J., and Toksöz, M. N. (2011). Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks. Geophysics, 76(6), WC87–WC101. https://doi.org/10.1190/geo2011-0030.1

Li, J. L., Zhang, H. J., Rodi, W. L., and Toksoz, M. N. (2013). Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths. Geophys. J. Inter., 195(3), 1917–1931. https://doi.org/10.1093/gji/ggt358

Li, L., Tan, J. Q., Schwarz, B., Staněk, F., Poiata, N., Shi, P. D., Diekmann, L., Eisner, L., and Gajewski, D. (2020). Recent advances and challenges of waveform-based seismic location methods at multiple scales. Rev. Geophy., 58(1), e2019RG000667. https://doi.org/10.1029/2019RG000667

Liang, C. T., Yu, Y. Y., Yang, Y. H., Kang, L., Yin, C., and Wu, F. R. (2016). Joint inversion of source location and focal mechanism of microseismicity. Geophysics, 81(2), KS41–KS49. https://doi.org/10.1190/geo2015-0272.1

Lin, Y., and Zhang, H. J. (2016). Imaging hydraulic fractures by microseismic migration for downhole monitoring system. Phys. Earth Planet. Inter., 261, 88–97. https://doi.org/10.1016/j.pepi.2016.06.010

Long, F., Zhang, Z. W., Qi, Y. P., Liang, M. J., Ruan, X., Wu, W. W., Jiang, G. M., and Zhou, L. Q. (2020). Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan. Earth Planet. Phys., 4(2), 163–177. https://doi.org/10.26464/epp2020022

Maxwell, S. (2011). Microseismic hydraulic fracture imaging: The path toward optimizing shale gas production. Lead. Edge, 30(3), 340–346. https://doi.org/10.1190/1.3567266

Maxwell, S. C. , and Urbancic, T. I. (2002). Real-time 4D reservoir characterization using passive seismic data. In SPE Annual Technical Conference and Exhibition. San Antonio: Society of Petroleum Engineers. https://doi.org/10.2118/77361-MS222

Maxwell, S. C., Rutledge, J., Jones, R., and Fehler, M. (2010). Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75(5), 75A129–75A137. https://doi.org/10.1190/1.3477966

Nakata, N., and Beroza, G. C. (2016). Reverse time migration for microseismic sources using the geometric mean as an imaging condition. Geophysics, 81(2), KS51–KS60. https://doi.org/10.1190/geo2015-0278.1

Pesicek, J. D., Child, D., Artman, B., and Cieślik, K. (2014). Picking versus stacking in a modern microearthquake location: comparison of results from a surface passive seismic monitoring array in Oklahoma. Geophysics, 79(6), KS61–KS68. https://doi.org/10.1190/geo2013-0404.1

Phillips, W. S., Rutledge, J. T., House, L. S., Fehler, M. C. (2002). Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: Six Case Studies. In: Trifu, C. I. (eds.). The Mechanism of Induced Seismicity. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8179-1_15222

Pujol, J. (1992). Joint hypocentral location in media with lateral velocity variations and interpretation of the station corrections. Phys. Earth Planet. Inter., 75(1-3), 7–24. https://doi.org/10.1016/0031-9201(92)90114-B

Qian, J. W., Zhang, H. J., and Westman, E. (2018). New time-lapse seismic tomographic scheme based on double-difference tomography and its application in monitoring temporal velocity variations caused by underground coal mining. Geophys. J. Int., 215(3), 2093–2104. https://doi.org/10.1093/gji/ggy404

Rutledge, J. T., Phillips, W. S., and Schuessler, B. K. (1998). Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky. Tectonophysics, 289(1-3), 129–152. https://doi.org/10.1016/S0040-1951(97)00312-0

Rutledge, J. T., and Phillips, W. S. (2003). Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68(2), 441–452. https://doi.org/10.1190/1.1567214

Steiner, B., Saenger, E. H., and Schmalholz, S. M. (2008). Time reverse modeling of low-frequency microtremors: application to hydrocarbon reservoir localization. Geophys. Res. Lett., 35(3), L03307. https://doi.org/10.1029/2007GL032097

Sun, J. Z. , Zhu, T. Y. , Fomel, S. , and Song, W. Z. (2015). Investigating the possibility of locating microseismic sources using distributed sensor networks. In SEG Technical Program Expanded Abstracts 2015 (pp. 2485-2490). Society of Exploration Geophysicists.222

Tan, Y. Y., Hu, J., Zhang, H. J., Chen, Y. K., Qian, J. W., Wang, Q. F., Zha, H. S., Tang, P., and Nie, Z. (2020). Hydraulic fracturing induced seismicity in the Southern Sichuan Basin due to fluid diffusion inferred from seismic and injection data analysis. Geophys. Res. Lett., 47(4), e2019GL084885. https://doi.org/10.1029/2019GL084885

Tang, L. Z., Yang, C. X., and Pan, C. L. (2006). Optimization of microseismic monitoring network for large-scale deep well mining. Chin. J. Rock Mech. Eng., 25(10), 2036–2042. https://doi.org/10.3321/j.issn:1000-6915.2006.10.014

Waldhauser, F., and Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull. Seismol. Soc. Am., 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Waldhauser, F., and Schaff, D. P. (2008). Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. J. Geophys. Res. :Solid Earth, 113(B8), B08311. https://doi.org/10.1029/2007JB005479

Yang, S. B., Hu, J., Zhang, H. J., and Liu, G. Q. (2021). Simultaneous earthquake detection on multiple stations via a convolutional neural network. Seismol. Res. Lett., 92(1), 246–260. https://doi.org/10.1785/0220200137

Zhang, H. J., and Thurber, C. H. (2003). Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93(5), 1875–1889. https://doi.org/10.1785/0120020190

Zhang, H. J., Sarkar, S., Toksöz, M. N., Kuleli, H. S., and Al-Kindy, F. (2009). Passive seismic tomography using induced seismicity at a petroleum field in Oman. Geophysics, 74(6), WCB57–WCB69. https://doi.org/10.1190/1.3253059

Zhang, H. J., Nadeau, R. M., and Toksoz, M. N. (2010). Locating nonvolcanic tremors beneath the San Andreas fault using a station-pair double-difference location method. Geophys. Res. Lett., 37(13), L13304. https://doi.org/10.1029/2010GL043577

Zhebel, O., and Eisner, L. (2015). Simultaneous microseismic event localization and source mechanism determination. Geophysics, 80(1), KS1–KS9. https://doi.org/10.1190/geo2014-0055.1

Zhu, T. Y., Sun, J. Z., Gei, D., Carcione, J. M., Cance, P., and Huang, C. (2019). Hybrid multiplicative time-reversal imaging reveals the evolution of microseismic events: theory and field-data tests. Geophysics, 84(3), KS71–KS83. https://doi.org/10.1190/geo2018-0662.1

[1]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[2]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[3]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[4]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[5]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[6]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[7]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[8]

Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Maduo earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics. doi: 10.26464/epp2022007

[9]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[10]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[11]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[12]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[13]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[14]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[15]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[16]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[17]

Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026

[18]

HongFeng Yang, XiaoWei Chen, Rebecca Harrington, YaJing Liu, 2021: Preface to the special collection of Induced Earthquakes, Earth and Planetary Physics, 5, 483-484. doi: 10.26464/epp2021057

[19]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[20]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Development of a new high resolution waveform migration location method and its applications to induced seismicity

SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin