Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: ShuYang Yu, Jian Rao, and Dong Guo, 2022: Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling, Earth and Planetary Physics. http://doi.org/10.26464/epp2022015

doi: 10.26464/epp2022015

Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling

1 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China;

2 School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China;

3 Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China

Corresponding author: and Dong Guo,

Fund Project: The authors thank ECMWF (https://cds.climate.copernicus.eu) for their providing the ERA5 reanalysis data. We acknowledge the High Performance Computing Center of Nanjing University of Information Science & Technology for their support of this work. The authors thank the ESGF (https://esgf-node.llnl.gov/projects/esgf-llnl/) and NCAR for their freely providing the CMIP6 simulations by CESM2-WACCM. All CMIP6 data used in this study are publicly available from ESGF. This study was joint supported by the National Natural Science Foundation of China (Grant NO. 91837311).

The tropospheric impact of Arctic ozone loss events is still debatable. Using the ERA5 reanalysis and long-term integration by a climate-chemistry coupled model (CESM2-WACCM), the frequency of the Arctic ozone loss event and its tropospheric impacts are investigated in this study. On average, Arctic ozone loss events occur once in early spring every 14-15 years in both the ERA5 and the model. It is estimated from both ERA5 and modelling that roughly 40% of the strong polar vortex events in March are coupled with Arctic ozone loss and the remaining 60% are uncoupled. The composite difference between the two samples might be attributed to the pure impact of the Arctic ozone loss with the interference of strong polar vortices’ impact removed. Arctic ozone loss is accompanied by an increase in total ozone in midlatitudes with the maximum center in Central North Pacific. Comparing Arctic ozone loss events and pure strong polar vortex events uncoupled with ozone loss, the stratospheric NAM reverses earlier for the former. For the pure strong vortex events in early spring without Arctic ozone loss, the cold anomalies can extent from the stratosphere to the middle troposphere. The near surface warm anomalies are biased toward the continents during strong polar vortex events without ozone loss. In contrast, ozone loss in spring during the other 40% strong polar vortex events favors a concurrent and delayed warming of the near surface over the Arctic and its neighboring areas due to vertical redistribution of the solar radiation by the change in the ozone.

Key words: Arctic ozone loss, strong polar vortex, CESM2-WACCM, historical run

Arnone, E., E. Castelli, E. Papandrea, M. Carlotti, and B. M. Dinelli, 2012: Extreme ozone depletion in the 2010-2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach. Atmos. Chem. Phys., 12(19), 9149-9165. https://doi.org/10.5194/acp-12-9149-2012 Ashmore, M. R., 2010: Assessing the future global impacts of ozone on vegetation. Plant Cell Environ., 28(8), 949-964. https://doi.org/10.1111/j.1365-3040.2005.01341.x Bernhard, G., A. Dahlback, V. Fioletov, A. Heikkil, and B. Johnsen, 2013: High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole. Atmos. Chem. Phys., 13(21), 10573-10590. https://doi.org/10.5194/acp-13-10573-2013 Butchart, N., 2014: The Brewer‐Dobson circulation. Rev. Geophys., 52(2), 157-184. https://doi.org/10.1002/2013rg000448 Calvo, N., L. M. Polvani, and S. Solomon, 2015: On the surface impact of Arctic stratospheric ozone extremes. Environ. Res. Lett., 10(9), 1748-9326. https://doi.org/10.1088/1748-9326/10/9/094003 Cao, C., Y.-H. Chen, J. Rao, S.-M. Liu, S.-Y. Li, M.-H. Ma, and Y.-B. Wang, 2019: Statistical characteristics of major sudden stratospheric warming events in cesm1-waccm: a comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere, 10(9), 519. https://doi.org/10.3390/atmos10090519 Cheung, J. C. H., J. D. Haigh, and D. R. Jackson, 2014: Impact of EOS MLS ozone data on medium-extended range ensemble weather forecasts. J. Geophys. Res. Atmos., 119(15), 9253-9266. https://doi.org/10.1002/2014jd021823 Chipperfield, M. P., S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders, and J. A. Pyle, 2015: Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun., 6, 7233. https://doi.org/10.1038/333390b0 Dennison, F. W., A. J. McDonald, and O. Morgenstern, 2015: The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 120(13), 6305-6312. https://doi.org/10.1002/2014jd023009 Douglass, A. R., P. A. Newman, and S. Solomon, 2014: The Antarctic ozone hole: An update. Today Phys., 67(7), 42-48. https://doi.org/10.1063/Pt.3.2449 Edmon, H. J., B. J. Hoskins, and M. E. Mcintyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37(12), 2600-2616. https://doi.org/10.1175/1520-0469(1980)0372.0.CO;2 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev., 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016 Eyring, V., I. Cionni, G. E. Bodeker, A. J. Charlton-Perez, D. E. Kinnison, Scinocca, J. F. Scinocca, and Y. Yamashita, 2010: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys., 10(19), 9451-9472. https://doi.org/10.5194/acp-10-9451-2010 Eyring, V., D. W. Waugh, G. E. Bodeker, E. Cordero, H. Akiyoshi, J. Austin, and M. Yoshiki, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303. https://doi.org/10.1029/2006jd008332 Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016), 207-210. https://doi.org/10.1038/315207a0 Fowler, D., K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, and J. W. Erisman, 2009: Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmos. Environ., 43(33), 5193-5267. https://doi.org/10.1016/j.atmosenv.2009.07.068 Harari, O., C. I. Garfinkel, S. Z. Ziv, O. Morgenstern, G. Zeng, S. Tilmes, and S. Davis, 2019: Influence of Arctic stratospheric ozone on surface climate in CCMI models. Atmos. Chem. Phys., 19(14), 9253-9268. https://doi.org/10.5194/acp-19-9253-2019 Hendon, H. H., D. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the southern hemisphere annular mode. J. Climate, 20(11), 2452-2467. https://doi.org/10.1175/JCLI4134.1 Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabater, and J. N. Thépaut, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146(730), 1999-2049. https://doi.org/10.1002/qj.3803 Hu, Y., and Y. Xia, 2013: Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010–2011. Chinese Sci. Bull., 58(25), 3155-3160. https://doi.org/10.1007/s11434-013-5945-5 Huang, J., W. Tian, J. Zhang, H. Qian, H. Tian and J. Luo., 2017: The connection between extreme stratospheric polar vortex events and tropospheric blockings. Q. J. Roy. Meteor. Soc., 143(703), 1148-1164. https://doi.org/10.1002/qj.3001 Ivy, D. J., S. Solomon, N. Calvo, and D. W. J. Thompson, 2017: Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ. Res. Lett., 12(2), 1748-9326. https://doi.org/10.1088/1748-9326/aa57a4 Karpechko, A. Y., J. Perlwitz, and E. Manzini, 2014: A model study of tropospheric impacts of the Arctic ozone depletion 2011. J. Geophys. Res. Atmos., 119(13), 7999-8014. https://doi.org/10.1002/2013JD021350 Liu, N. Q., F. X. Huang, and W. H. Wang, 2011: Monitoring of the 2011 spring low ozone events in the Arctic region. Chinese Sci. Bull., 56(27), 2893-2896. https://doi.org/10.1007/s11434-011-4636-3 Liu, S. M., Y. H. Chen, J. Rao, C. Cao, S. Y. Li, M. H. Ma, and Y. B.Wang, 2019: Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere, 10(11), 679. https://doi.org/10.3390/atmos10110679 Manney, G. L., N. J. Livesey, M. L. Santee, L. Froidevaux, and R. Fuller, 2020: Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett., 47, e2020GL089063. https://doi.org/10.1002/essoar.10503256.2 Marshall, G. J., A. Orr, N. V. Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic peninsula summer temperatures. J. Climate, 19(20), 5388-5404. https://doi.org/10.1175/JCLI3844.1 Newman, P. A., J. F. Gleason, R. D. McPeters, and R. S. Stolarski, 1997: Anomalously low ozone over the Arctic. Geophys. Res. Lett., 24(22), 2689-2692. https://doi.org/10.1029/97gl52831 Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35(8), L08714. https://doi.org/10.1029/2008gl033317 Previdi, M., and L. M. Polvani, 2014: Climate system response to stratospheric ozone depletion and recovery. Q. J. Roy. Meteor. Soc., 140(685), 2401-2419. https://doi.org/10.1002/qj.2330 Randel, W. J., and F. Wu, (1999). Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12(5), 1467-1479. https://doi.org/10.1175/1520-0442(1999)0122.0.CO Rao, J., and C. I. Garfinkel, 2020: Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases. J. Geophys. Res. Atmos., 125(21), e2020JD033524. https://doi.org/10.1029/2020jd033524 Rao, J., and C. I. Garfinkel, 2021: The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: Implications for empirical prediction of the low arctic total ozone extreme. J. Geophys. Res. Atmos., 126(9), e2020JD034190. https//doi.org/10.1029/2020jd034190 Rao, J., Y. Yu, D. Guo, C. Shi, D. Chen, and D. Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth Planet. Phys., 3(2), 166-181. https://doi.org/10.26464/epp2019012 Rao, J., and R. Ren, 2016: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. J. Geophys. Res. Atmos., 121(15), 9017-9032. https://doi.org/10.1002/2015jd024521 Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15(21), 3058-3068. https://doi.org/10.1175/1520-0442(2002)0152.0.CO;2 Rex, M., R. J. Salawitch, H. Deckelmann, P. V. D. Gathen, N. R. P. Harris, M. P. Chipperfield, and C. Zerefos, 2006: Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys. Res. Lett., 33(23), L23808. https://doi.org/10.1029/2006gl026731 Rex, M., R. J. Salawitch, P. V. D. Gathen, N. R. P. Harris, M. P. Chipperfield, and B. Naujokat, 2004: Arctic ozone loss and climate change. Geophys. Res. Lett., 31(4), L04116. https://doi.org/10.1029/2003GL018844 Roscoe, H. K., 2006: The Brewer–Dobson circulation in the stratosphere and mesosphere – Is there a trend? Adv. Space. Res., 38(11), 2446-2451. https://doi.org/10.1016/j.asr.2006.02.078 Rowland, F. S., 2006: Stratospheric ozone depletion. Philos. Trans. R. Soc. Lond. B Biol. Sci., 361(1469), 769-790. https://doi.org/10.1098/rstb.2005.1783 Shi, C., J. Cai, D. Guo, T. Xu, and Y. Lu, 2018: Responses of stratospheric temperature and Brewer-Dobson circulation to 11-year solar cycle in boreal winter. Trans. Atmos. Sci., 41(02), 275-281. https://doi.org/10.13878/j.cnki.dqkxxb.20160101001 Shindell, D. T., 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31(18), L18209. https://doi.org/ https://doi.org/10.1029/2004gl020724 Smith, K. L., and L. M. Polvani, 2014: The surface impacts of Arctic stratospheric ozone anomalies. Environ. Res. Lett., 9(7), 1748-9326. https://doi.org/10.1088/1748-9326/9/7/074015 Smith, K. L., and L. M. Polvani, 2017: Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models. Clim. Dynam., 48(7-8), 2653-2670. https://doi.org/10.1007/s00382-016-3230-4 Smyshlyaev, S. P., P. N. Vargin, A. N. Lukyanov, N. D. Tsvetkova, and M. A. Motsakov, 2021: Dynamical and chemical processes contributing to ozone loss in exceptional Arctic stratosphere winter-spring of 2020. Atmos. Chem. Phys. Discuss, 2021, 1-35. https://doi.org/10.5194/acp-2021-11 Solomon, S., 1986: On the depletion of Antarctic ozone. Nature, 321, 755-758. https://doi.org/10.1038/321755a0 Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophy., 37(3), 275-316. https://doi.org/10.1029/1999rg900008 Solomon, S., J. Haskins, D. J. Ivy, and F. Min, 2014: Fundamental differences between Arctic and Antarctic ozone depletion. Proc. Natl. Acad. Sci. USA., 111(17), 6220-6225. https://doi.org/10.1073/pnas.1319307111 Son, S.W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36(15), L15705. https://doi.org/10.1029/2009gl038671 Stolarski, R. S., A. J. Krueger, M. R. Schoeberl, R. D. Mcpeters, P. A. Newman, and J. C. Alpert, 1986: Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 322(6082), 808-811. https://doi.org/10.1038/322808a0 Stone, K. A., S. Solomon, D. E. Kinnison, C. F. Baggett, and E. A. Barnes, 2019: Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geophys. Res. Atmos., 124(12), 5922-5933. https://doi.org/10.1029/2018jd029626 Thiéblemont, R., K. Matthes, Y. J. Orsolini, A. Hauchecorne, and N. Huret, 2016: Poleward transport variability in the Northern Hemisphere during final stratospheric warmings simulated by CESM(WACCM). J. Geophys. Res. Atmos., 121(18), 10,394-310,410. https://doi.org/10.1002/2016jd025358 Thompson, D., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13(5), 1018-1036. https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2 Thompson, D. W., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296(5569), 895-899. https://doi.org/10.1126/science.1069270 Thompson, D. W. J., K. M. Grise, and P. M. Forster, 2009: On the role of radiative processes in stratosphere–troposphere coupling. J. Climate, 22(15), 4154-4161. https://doi.org/10.1175/2009jcli2756.1 Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4(11), 741-749. https://doi.org/10.1038/Ngeo1296 Tilmes, S., J. H. Richter, B. Kravitz, D. G. MacMartin, M. J. Mills, I. R. Simpson, and S. Ghosh, 2018: CESM1(WACCM) stratospheric aerosol geoengineering large ensemble project. Bull. Am. Meteorol. Soc., 99(11), 2361-2371. https://doi.org/10.1175/bams-d-17-0267.1 Turnock, S. T., O. Wild, A. Sellar, and F. M. O'Connor, 2019: 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach. Atmospheric Environ., 213, 686-698. https://doi.org/10.1016/j.atmosenv.2019.07.001 Organization, W. M., 2002: Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project, Report No. 51, 347(6172), 390. https://doi.org/10.1038/333390b0 Xia, Y., Y. Huang, and Y. Hu, 2018: On the climate impacts of upper tropospheric and lower stratospheric ozone. J. Geophys. Res., 123(2), 730-739. https://doi.org/10.1002/2017jd027398 Xie, F., W. Tian, and M. P. Chipperfield, 2008: Radiative effect of ozone change on stratosphere-troposphere exchange. J. Geophys. Res., 113(7), L17807. https://doi.org/10.1029/2008jd009829 Zhang, Y., Z. Cai, Y. Liu, 2021: The exceptionally strong and persistent Arctic stratospheric polar vortex in the winter of 2019–2020. Atmos. Ocean Sci. Lett.,14(2), 100035. https://doi.org/10.1016/j.aosl.2021.100035 Zhang, Y., W. Wang, X. Li, X. Zhang, Z. Zheng, and R. Liu, 2013: Anomalously low ozone of 1997 and 2011 Arctic spring: Monitoring results and analysis. Adv. Polar Sci., 23(2), 82-86. https://doi.org/10.3724/sp.J.1085.2012.00082 Zhang, Z., J. Rao, D. Guo, W. Zhang, L. Li, Z. Tang, and F. Zhang, 2019: Interdecadal variations of the midlatitude ozone valleys in summer. Atmosphere, 10(11), 677. https://doi.org/10.3390/atmos10110677 Zubiaurre, I., and N. Calvo, 2012: The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117(D4), D04104. https://doi.org/10.1029/2011jd016690

[1]

XiaoYan Bai, KaiMing Huang, ShaoDong Zhang, ChunMing Huang, Yun Gong, 2021: Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis, Earth and Planetary Physics, 5, 280-289. doi: 10.26464/epp2021028

[2]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061

[3]

Safi Ullah, HaiLong Li, Abdur Rauf, Lin Meng, Bin Wang, ShuCan Ge, MaoYan Wang, 2021: Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region, Earth and Planetary Physics, 5, 196-204. doi: 10.26464/epp2021016

[4]

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

[5]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[6]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[7]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[8]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[9]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[10]

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023

[11]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[12]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling

ShuYang Yu, Jian Rao, and Dong Guo