Citation:
Xu, K. H., He, F., Wei, Y., Mitchell, R. N., Chen, S., Wang, Y. Q., and Rong, Z. J. (2022). A new inclination-based method to evaluate the global geomagnetic configuration and axial dipole moment. Earth Planet. Phys., 6(4), 359–365. http://doi.org/10.26464/epp2022030
2022, 6(4): 359-365. doi: 10.26464/epp2022030
A new inclination-based method to evaluate the global geomagnetic configuration and axial dipole moment
1. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
2. | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
3. | School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK |
The strength and configuration of the geomagnetic field control the average shape of the magnetosphere. The pure dipole assumption and the virtual dipole moment (VDM), determined by individual records, have been widely adopted to evaluate the strength of the geomagnetic field in geological time. However, such an assumption might not be valid during geomagnetic transitions, such as reversals and excursions. The traditional spherical harmonic modeling of the geomagnetic field could be difficult to implement because accurate global records are lacking. Here, we report that an empirical relationship exists between the ratio of the VDM to the true axial dipole moment (VDM/ADM) and the ratio of the power of the axial dipole to that of the non-axial dipole (AD/NAD) based on a new method utilizing globally distributed inclination records. The root mean square global deviation of inclination (RMSΔI) to the standard inclination distribution of the AD was fitted to the AD/NAD with a cubic polynomial by utilizing a large number of geodynamo simulations. Tests with geomagnetic field models showed that the AD/NAD derived from the RMSΔI agreed well with that calculated by using the Gauss coefficients, and the estimated ADM was consistent with the true value. Finally, the application of volcanic records during the Laschamp excursion showed the VDM might overestimate the ADM by a factor of 3. Our new method will be useful in future studies that characterize the configuration of the geomagnetic field and the strength of the axial dipole.
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., … Zhou, B. (2021). International Geomagnetic Reference Field: the thirteenth generation. Earth, Planets Space, 73(1), 49.222 |
Biggin, A. J., Bono, R. K., Meduri, D. G., Sprain, C. J., Davies, C. J., Holme, R., and Doubrovine, P. V. (2020). Quantitative estimates of average geomagnetic axial dipole dominance in deep geological time. Nat. Commun., 11(1), 6100. https://doi.org/10.1038/s41467-020-19794-7 |
Brown, M. C., Donadini, F., Korte, M., Nilsson, A., Korhonen, K., Lodge, A., Lengyel, S. N., and Constable, C. G. (2015). GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database. Earth, Planets Space, 67(1), 83.222 |
Cassidy, J., and Hill, M. J. (2009). Absolute palaeointensity study of the Mono Lake excursion recorded by New Zealand basalts. Phys. Earth Planet. Inter., 172(3-4), 225–234. https://doi.org/10.1016/j.pepi.2008.09.018 |
Christensen, U. R., Aubert, J., and Hulot, G. (2010). Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett., 296(3-4), 487–496. https://doi.org/10.1016/j.jpgl.2010.06.009 |
Davies, C. J., and Constable, C. G. (2014). Insights from geodynamo simulations into long-term geomagnetic field behaviour. Earth Planet. Sci. Lett., 404, 238–249. https://doi.org/10.1016/j.jpgl.2014.07.042 |
Gao, J. W., Korte, M., Panovska, S., Rong, Z. J., and Wei, Y. (2022). Effects of the Laschamps excursion on geomagnetic cutoff rigidities. Geochem., Geophys., Geosyst., 23(2), e2021GC010261.222 |
Glatzmaier, G. A., and Roberts, P. H. (1995). A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377(6546), 203–209. https://doi.org/10.1038/377203a0 |
Gong, F., Yu, Y. Q., Cao, J. B., Wei, Y., Gao, J. W., Li, H., Zhang, B. Z., and Ridley, A. (2022). Simulating the solar wind–magnetosphere interaction during the Matuyama–Brunhes paleomagnetic reversal. Geophys. Res. Lett., 49(3), e2021GL097340. https://doi.org/10.1029/2021GL097340 |
Grießmeier, J. M., Khodachenko, M., Lammer, H., Grenfell, J. L., Stadelmann, A., and Motschmann, U. (2009). Stellar activity and magnetic shielding. Proc. Int. Astron. Union, 5(S264), 385–394. https://doi.org/10.1017/s1743921309992961 |
Guillou, H., Singer, B. S., Laj, C., Kissel, C., Scaillet, S., and Jicha, B. R. (2004). On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett., 227(3-4), 331–343. https://doi.org/10.1016/j.jpgl.2004.09.018 |
Korte, M., and Constable, C. G. (2005). The geomagnetic dipole moment over the last 7000 years—new results from a global model. Earth Planet. Sci. Lett., 236(1-2), 348–358. https://doi.org/10.1016/j.jpgl.2004.12.031 |
Korte, M., Brown, M. C., Panovska, S., and Wardinski, I. (2019). Robust characteristics of the Laschamp and Mono Lake geomagnetic excursions: results from global field models. Front. Earth Sci., 7, 86. https://doi.org/10.3389/feart.2019.00086 |
Leonhardt, R., and Fabian, K. (2007). Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett., 253(1-2), 172–195. https://doi.org/10.1016/j.jpgl.2006.10.025 |
Leonhardt, R., Fabian, K., Winklhofer, M., Ferk, A., Laj, C., and Kissel, C. (2009). Geomagnetic field evolution during the Laschamp excursion. Earth Planet. Sci. Lett., 278(1-2), 87–95. https://doi.org/10.1016/j.jpgl.2008.11.028 |
Meduri, D. G., Biggin, A. J., Davies, C. J., Bono, R. K., Sprain, C. J., and Wicht, J. (2021). Numerical dynamo simulations reproduce paleomagnetic field behavior. Geophys. Res. Lett., 48(5), e2020GL090544. https://doi.org/10.1029/2020GL090544 |
Merrill, R. T., McElhinny, M. W., and McFadden, P. L. (1998). The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. San Diego, California: Academic Press.222 |
Panovska, S., Constable, C. G., and Korte, M. (2018). Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochem., Geophys., Geosyst., 19(12), 4757–4772.222 |
Panovska, S., Korte, M., and Constable, C. G. (2019). One hundred thousand years of geomagnetic field evolution. Rev. Geophys., 57(4), 1289–1337. https://doi.org/10.1029/2019RG000656 |
Panovska, S., Korte, M., Liu, J. B., and Nowaczyk, N. (2021). Global evolution and dynamics of the geomagnetic field in the 15–70 kyr period based on selected paleomagnetic sediment records. J. Geophys. Res.:Solid Earth, 126(12), e2021JB022681. https://doi.org/10.1029/2021JB022681 |
Rong, Z. J., Wei, Y., Klinger, L., Yamauchi, M., Xu, W. Y., Kong, D. L., Cui, J., Shen, C., Yang, Y. Y., … Chai, L. H. (2021). A new technique to diagnose the geomagnetic field based on a single circular current loop model. J. Geophys. Res.:Solid Earth, 126(11), e2021JB022778. https://doi.org/10.1029/2021JB022778 |
Smith, P. J. (1967). The intensity of the ancient geomagnetic field: a review and analysis. Geophys. J. R. Astron. Soc., 12(4), 321–362. https://doi.org/10.1111/j.1365-246X.1967.tb03146.x |
Sprain, C. J., Biggin, A. J., Davies, C. J., Bono, R. K., and Meduri, D. G. (2019). An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (QPM). Earth Planet. Sci. Lett., 526, 115758. https://doi.org/10.1016/j.jpgl.2019.115758 |
Stadelmann, A., Vogt, J., Glassmeier, K. H., Kallenrode, M. B., and Voigt, G. H. (2010). Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth, Planets Space, 62(3), 333–345.222 |
Tauxe, L., and Kent, D. V. (2004). A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar?. In J. E. T. Channell, et al. (Eds.), Timescales of the Paleomagnetic Field (Vol. 145, pp. 101–115). Washington, DC: American Geophysical Union.222 |
Tsareva, O. O., Dubinin, E. M., Malova, H. V., Popov, V. Y., and Zelenyi, L. M. (2020). Atmospheric escape from the Earth during geomagnetic reversal. Ann. Geophys., 63(2), PA223. https://doi.org/10.4401/ag-8354 |
Vogt, J., Zieger, B., Glassmeier, K. H., Stadelmann, A., Kallenrode, M. B., Sinnhuber, M., and Winkler, H. (2007). Energetic particles in the paleomagnetosphere: reduced dipole configurations and quadrupolar contributions. J. Geophys. Res., 112(A6), A06216. https://doi.org/10.1029/2006ja012224 |
Wei, Y., Pu, Z. Y., Zong, Q. G., Wan, W. X., Ren, Z. P., Fraenz, M., Dubinin, E., Tian, F., Shi, Q. Q., … Hong, M. H. (2014). Oxygen escape from the Earth during geomagnetic reversals: implications to mass extinction. Earth Planet. Sci. Lett., 394, 94–98. https://doi.org/10.1016/j.jpgl.2014.03.018 |
[1] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[2] |
HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019 |
[3] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[4] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[5] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[6] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[7] |
YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030 |
[8] |
SuPing Duan, Chi Wang, Weining William Liu, ZhaoHai He, 2021: Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by THEMIS, Earth and Planetary Physics, 5, 239-250. doi: 10.26464/epp2021031 |
[9] |
ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011 |
[10] |
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028 |
[11] |
Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022 |
[12] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[13] |
XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017 |
[14] |
Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)