Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Xiao, C., Liu, W. L., Zhang, D. J., and Zhang, Z. (2020). A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements. Earth Planet. Phys., 4(3), 266–273doi: 10.26464/epp2020031

2020, 4(3): 266-273. doi: 10.26464/epp2020031

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements

1. 

School of Space and Environment, Beihang University, Beijing 102206, China

2. 

Key Laboratory of Space Environment monitoring and Information Processing of MIIT, Beijing 102206, China

Corresponding author: WenLong Liu, liuwenlong@buaa.edu.cn

Received Date: 2020-02-05
Web Publishing Date: 2020-05-01

Nine years (2001–2009) of data from the Cluster spacecraft are analyzed in this study of the Earth’s mid- and high-altitude (2–9RE) cusp. Properties of the cusp region, and its location and size in the Solar Magnetic coordinate system, are studied statistically. The survey shows that (1) the relationships between X and Z are nearly linear for the poleward, equatorward boundaries and the center of the cusp; (2) the relationship between cusp width in the X direction and Z can be expressed by a quadratic function; (3) the cusp region is almost dawn-dusk symmetric for the cusp width in the X direction. Based on topology information, a new normalized statistical methodology is developed to organize the measurements of cusp crossings to obtain distributions of magnetic field and plasma parameters in the XZ plane. The statistical results show that (1) Bx is mostly negative and Bz is always negative; (2) proton velocity is found to be positive for Vx and Vz at low altitudes, while Vx and Vz are negative on the equator side and negative Vx and positive Vz on the pole side at high altitudes; (3) proton density is higher on the equator side than on the pole side. Results reported here will be useful in suggesting directions for future cusp research.

Key words: cusp, statistical study, new methodology, topology

Cao, D., Fu, H. S., Cao, J. B., Wang, T. Y., Graham, D. B., Chen, Z. Z., Peng, F. Z., Huang, S. Y., Khotyaintsev, Y. V., … Burch, J. L. (2017). MMS observations of whistler waves in electron diffusion region. Geophys. Res. Lett., 44(9), 3954–3962. https://doi.org/10.1002/2017GL072703

Cao, J. B., Leonovich, A., Zhou, G. C., Liu, Z. X., Reme, H., Dandouras, I. (2005). A theoretic interpretation of movement of the cusp equatorward boundary. Chinese Journal of Space Science, 25(5), 412–417. https://doi.org/10.11728/cjss2005.05.412

Cargill, P. J., Lavraud, B., Owen, C. J., Grison, B., Dunlop, M. W., Cornilleau-Wehrlin, N., Escoubet, C. P., Paschmann, G., Phan, T. D., … Nykyri, K. (2005). Cluster at the magnetospheric cusps. Space Sci. Rev., 118(1-4), 321–366. https://doi.org/10.1007/s11214-005-3835-0

Chapman, S., and Ferraro, V. C. A. (1930). A new theory of magnetic storms. Nature, 126(3169), 129–130. https://doi.org/10.1038/126129a0

Chen, J. S., and Fritz, T. A. (1998). Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett., 25(22), 4113–4116. https://doi.org/10.1029/1998GL900122

Chen, J. S., Fritz, T. A., and Sheldon, R. B. (2005). Comparison of energetic ions in cusp and outer radiation belt. J. Geophys. Res., 110(A12), A12219. https://doi.org/10.1029/2004JA010718

Delcourt, D. C., and Sauvaud, J. A. (1999). Populating of the cusp and boundary layers by energetic (hundreds of keV) equatorial particles. J. Geophys. Res., 104(A10), 22635–22648. https://doi.org/10.1029/1999JA900251

Duan, S. P., Liu, Z. X., Cao, J. B., Shi, J. K., Lu, L., Li, Z. Y., Zong, Q.-G., Reme, H., Cornilleau-Wehrlin, N., Balogh, A., Andre, M. (2006). Analysis of the interaction between low-frequency waves and ions in the high-altitude cusp region observed by satellite Cluster. Chinese Physics Letters, 23(5), 1351–1354. https://doi.org/10.1088/0256-307X/23/5/079

Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47

Dunlop, M. W., Lavraud, B., Cargill, P., Taylor, M. G. G. T., Balogh, A., Réme, H., Decreau, P., Glassmeier, K.-H., Elphic, R. C., … Marchaudon, A. (2005). Cluster observations of the cusp: magnetic structure and dynamics. In T. A. Fritz, et al. (Eds.), The Magnetospheric Cusps: Structure and Dynamics (pp. 5–55). Dordrecht: Springer. https://doi.org/10.1007/1-4020-3605-1_2222

Escoubet, C., and Bosqued, J. M. (1989). The influence of IMF-Bz and/or AE on the polar cusp: an overview of observations from the AUREOL-3 satellite. Planet. Space Sci., 37(5), 609–626. https://doi.org/10.1016/0032-0633(89)90100-1

Grigoriev, A. Y., Fedorov, A. O., Budnik, E. Y., and Nikolaeva, N. S. (1999). Magnetospheric magnetic field in the outer cusp region: comparison of measurements obtained from the INTERBALL-1 satellite and from the T96 model. Cosmic Res., 37(6), 594–599.

Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C. (1978). The frontside boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res., 83(A7), 3195–3216. https://doi.org/10.1029/JA083iA07p03195

Haerendel, G., and Paschmann, G. (1982). Interaction of the solar wind with the dayside magnetosphere. In A. Nishida (Ed.), Magnetospheric Plasma Physics (pp. 81–122). Dordrecht: D. Reidel Publishing.222

Heikkila, W. J., and Winningham, J. D. (1971). Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps. J. Geophys. Res., 76(4), 883–891. https://doi.org/10.1029/JA076i004p00883

Heikkila, W. J. (1985). Definition of the cusp. In J. A. Holtet, et al. (Eds.), The Polar Cusp (pp. 387–395). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-5295-9_28222

Johnsen, M. G., and Lorentzen, D. A. (2012). A statistical analysis of the optical dayside open/closed field line boundary. J. Geophys. Res., 117(A2), A02218. https://doi.org/10.1029/2011JA016984

Lavraud, B., Dunlop, M. W., Phan, T. D., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Lundin, R., Taylor, M. G. G. T., … Balogh, A. (2002). Cluster observations of the exterior cusp and its surrounding boundaries under northward IMF. Geophys. Res. Lett., 29(20), 1995. https://doi.org/10.1029/2002GL015464

Lavraud, B., Phan, T. D., Dunlop, M. W., Taylor, M. G. G. G. T., Cargill, P. J., Bosqued, J. M., Dandouras, I., Rème, H., Sauvaud. J. A., … Fazakerley, A. (2004). The exterior cusp and its boundary with the magnetosheath: Cluster multi-event analysis. Ann. Geophys., 22(8), 3039–3054. https://doi.org/10.5194/angeo-22-3039-2004

Lavraud, B., Fedorov, A., Budnik, E., Thomsen, M. F., Grigoriev, A., Cargill, P. J., Dunlop, M. W., Rème, H., Dandouras, I., and Balogh, A. (2005). High-altitude cusp flow dependence on IMF orientation: a 3-year Cluster statistical study. J. Geophys. Res., 110(A2), A02209. https://doi.org/10.1029/2004JA010804

Le, G., Blanco-Cano, X., Russell, C. T., Zhou, X. W., Mozer, F., Trattner, K. J., Fuselier, S. A., and Anderson, B. J. (2001). Electromagnetic ion cyclotron waves in the high-altitude cusp: Polar observations. J. Geophys. Res., 106(A9), 19067–19079. https://doi.org/10.1029/2000JA900163

Liu, W. L., Tu, W. C., Li, X. L., Sarris, T., Khotyaintsev, Y., Fu, H. S., Zhang, H., and Shi, Q. Q. (2016). On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys. Res. Lett., 43(3), 1023–1030. https://doi.org/10.1002/2015GL067398

Lockwood, M., and Smith, M. F. (1992). The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. J. Geophys. Res., 97(A10), 14841–14847. https://doi.org/10.1029/92JA01261

Lockwood, M., and Smith, M. F. (1994). Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations: 1. Theory. J. Geophys. Res., 99(A5), 8531–8553. https://doi.org/10.1029/93JA03399

Mĕrka, J., Šafránková, J., and Nĕmeček, Z. (2002). Cusp-like plasma in high altitudes: a statistical study of the width and location of the cusp from Magion-4. Ann. Geophys., 20(3), 311–320. https://doi.org/10.5194/angeo-20-311-2002

Newell, P. T., and Meng, C.-I. (1987). Cusp width and Bz: Observations and a conceptual model. J. Geophys. Res., 92(A12), 13673–13678. https://doi.org/10.1029/ja092ia12p13673

Newell, P. T., and Meng, C.-I. (1989). Dipole tilt angle effects on the latitude of the cusp and cleft/low-latitude boundary layer. J. Geophys. Res., 94(A6), 6949–6953. https://doi.org/10.1029/ja094ia06p06949

Newell, P. T., Meng, C.-I., Sibeck, D. G., and Lepping, R. (1989). Some low-altitude cusp dependencies on the interplanetary magnetic field. J. Geophys. Res., 94(A7), 8921–8927. https://doi.org/10.1029/JA094iA07p08921

Newell, P. T., and Meng, C.-I. (1994). Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions. J. Geophys. Res., 99(A1), 273–286. https://doi.org/10.1029/93ja02273

Niehof, J. T., Fritz, T. A., Friedel, R. H. W., and Chen, J. S. (2010). Size and location of cusp diamagnetic cavities observed by Polar. J. Geophys. Res., 115(A7), A07201. https://doi.org/10.1029/2009JA014827

Nykyri, K., Cargill, P. J., Lucek, E., Horbury, T., Lavraud, B., Balogh, A., Dunlop, M. W., Bogdanova, Y., Fazakerley, A., … Rème, H. (2004). Cluster observations of magnetic field fluctuations in the high-altitude cusp. Ann. Geophys., 22(7), 2413–2429. https://doi.org/10.5194/angeo-22-2413-2004

Nykyri, K., Grison, B., Cargill, P. J., Lavraud, B., Lucek, E., Dandouras, I., Balogh, A., Cornilleau-Wehrlin, N., and Rème, H. (2006). Origin of the turbulent spectra in the high-altitude cusp: cluster spacecraft observations. Ann. Geophys., 24(3), 1057–1075. https://doi.org/10.5194/angeo-24-1057-2006

Nykyri, K., Otto, A., Adamson, E., Dougal, E., and Mumme, J. (2011). Cluster observations of a cusp diamagnetic cavity: Structure, size, and dynamics. J. Geophys. Res., 116(A3), A03228. https://doi.org/10.1029/2010JA015897

Palmroth, M., Laakso, H., and Pulkkinen, T. I. (2001). Location of high-altitude cusp during steady solar wind conditions. J. Geophys. Res., 106(A10), 21109–21122. https://doi.org/10.1029/2001JA900073

Paschmann, G., Haerendel, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C. (1976). Plasma and magnetic field characteristics of the distant polar cusp near local noon: the entry layer. J. Geophys. Res., 81(16), 2883–2899. https://doi.org/10.1029/ja081i016p02883

Peng, F. Z., Fu, H. S., Cao, J. B., Graham, D. B., Chen, Z. Z., Cao, D., Xu, Y., Huang, S. Y., Wang, T. Y., … Burch, J. L. (2017). Quadrupolar pattern of the asymmetric guide-field reconnection. J. Geophys. Res., 122(6), 6349–6356. https://doi.org/10.1002/2016JA023666

Pitout, F., Escoubet, C. P., Bogdanova, Y. V., Georgescu, E., Fazakerley, A. N., and Rème, H. (2006). Response of the mid-altitude cusp to rapid rotations of the IMF. Geophys. Res. Lett., 33(11), L11107. https://doi.org/10.1029/2005GL025460

Prölss, G. W. (2006). Electron temperature enhancement beneath the magnetospheric cusp. J. Geophys. Res., 111(A7), A07304. https://doi.org/10.1029/2006JA011618

Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., … Sonnerup, B. (2001). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19(10-12), 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001

Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., and Sckopke, N. (1975). Heos 2 plasma observations in the distant polar magnetosphere: the plasma mantle. J. Geophys. Res., 80(19), 2723–2737. https://doi.org/10.1029/JA080i019p02723

Russell, C. T., and Elphic, R. C. (1979). ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett., 6(1), 33–36. https://doi.org/10.1029/GL006i001p00033

Russell, C. T., Fedder, J. A., Slinker, S. P., Zhou, X. W., Le, G., Luhmann, J. G., Fenrich, F. R., Chandler, M. O., Moore, T. E., and Fuselier, S. A. (1998). Entry of the POLAR spacecraft into the polar cusp under northward IMF conditions. Geophys. Res. Lett., 25(15), 3015–3018. https://doi.org/10.1029/98GL00355

Savin, S., Büchner, J., Consolini, G., Nikutowski, B., Zelenyi, L., Amata, E., Auster, H. U., Blecki, J., Dubinin, E., …Yermolaev, Y. (2002). On the properties of turbulent boundary layer over polar cusps. Nonlinear Processes Geophys., 9(5-6), 443–451. https://doi.org/10.5194/npg-9-443-2002

Savin, S., Zelenyi, L., Romanov, S., Sandahl, I., Pickett, J., Amata, E., Avanov, L., Blecki, J., Budnik, E., … Yermolaev, Y. (2004). Magnetosheath-cusp interface. Ann. Geophys., 22(1), 183–212. https://doi.org/10.5194/angeo-22-183-2004

Savin, S. P., Romanov, S. A., Fedorov, A. O., Zelenyi, L., Klimov, S. I., Yermolaev, Y. I., Budnik, E. Y., Nikolaeva, N. S., Russell, C. T., … Reiff, P. H. (1998). The cusp/magnetosheath interface on May 29, 1996: interball-1 and Polar observations. Geophys. Res. Lett., 25(15), 2963–2966. https://doi.org/10.1029/98GL01402

Sckopke, N., Paschmann, G., Rosenbauer, H., and Fairfield, D. H. (1976). Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle. J. Geophys. Res., 81(16), 2687–2691. https://doi.org/10.1029/JA081i016p02687

Sckopke, N., and Paschmann, G. (1978). The plasma mantle. A survey of magnetotail boundary layer observations. J. Atmos. Terr. Phys., 40(3), 261–278. https://doi.org/10.1016/0021-9169(78)90044-2

Sheldon, R. B., Spence, H. E., Sullivan, J. D., Fritz, T. A., and Chen, J. S. (1998). The discovery of trapped energetic electrons in the outer cusp. Geophys. Res. Lett., 25(11), 1825–1828. https://doi.org/10.1029/98gl01399

Shen, C., Dunlop, M., Ma, Y. H., Chen, Z. Q., Yan, G. Q., Liu, Z. X., Bogdanova, Y. V., Sibeck, D. G., Carr, C. M., … Lucek, E. (2011). The magnetic configuration of the high-latitude cusp and dayside magnetopause under strong magnetic shears. J. Geophys. Res., 116(A9), A09228. https://doi.org/10.1029/2011JA016501

Shi, Q. Q., Zong, Q.-G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., … Lucek, E. (2009a). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J. Geophys. Res., 114(A12), A12219. https://doi.org/10.1029/2009JA014475

Shi, Q. Q., Pu, Z. Y., Soucek, J., Zong, Q.-G., Fu, S. Y., Xie, L., Chen, Y., Zhang, H., Li, L., … Rème, H. (2009b). Spatial structures of magnetic depression in the Earth’s high-altitude cusp: cluster multipoint observations. J. Geophys. Res., 114(A10), A10202. https://doi.org/10.1029/2009JA014283

Tsyganenko, N. A., and Stern, D. P. (1996). Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res., 101(A12), 27187–27198. https://doi.org/10.1029/96JA02735

Walsh, B. M., and Fritz, T. A. (2011). Cluster energetic electron survey of the high-altitude cusp and adjacent regions. J. Geophys. Res., 116(A12), A12212. https://doi.org/10.1029/2011JA016828

Wang, T. Y., Cao, J. B., Fu, H. S., Liu, W. L., and Dunlop, M. (2014). Turbulence in the Earth’s cusp region: The k-filtering analysis. J. Geophys. Res., 119(12), 9527–9542. https://doi.org/10.1002/2014JA019997

Xiao, C., Liu, W. L., Shen, C., Zhang, H., and Rong, Z. J. (2018). Study on the curvature and gradient of the magnetic field in Earth’s cusp region based on the magnetic curvature analysis method. J. Geophys. Res., 123(5), 3794–3805. https://doi.org/10.1029/2017JA025028

Yu, Y. Q., and Ridley, A. J. (2009). Response of the magnetosphere-ionosphere system to a sudden southward turning of interplanetary magnetic field. J. Geophys. Res., 114(A3), A03216. https://doi.org/10.1029/2008JA013292

Yu, Y. Q., and Ridley, A. J. (2013). Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics: Dependence on the source location. J. Geophys. Res., 118(4), 1711–1722. https://doi.org/10.1029/2012JA018411

Zhang, H., Fritz, T. A., Zong, Q.-G., and Daly, P. W. (2005). Stagnant exterior cusp region as viewed by energetic electrons and ions: A statistical study using Cluster Research with Adaptive Particle Imaging Detectors (RAPID) data. J. Geophys. Res., 110(A5), A05211. https://doi.org/10.1029/2004JA010562

Zhang, H., Fritz, T. A., Zong, Q.-G., and Daly, P. W. (2006). The high latitude boundaries under extreme solar wind conditions: a cluster perspective. In W. H. Ip, et al. (Eds.), Advances in Geosciences (pp. 163–172). Hackensack: World Scientific. https://doi.org/10.1142/9789812707185_0013222

Zhang, H., Dunlop, M. W., Zong, Q.-G., Fritz, T. A., Balogh, A., and Wang, Y. (2007). Geometry of the high-latitude magnetopause as observed by Cluster. J. Geophys. Res., 112(A2), A02204. https://doi.org/10.1029/2006JA011774

Zhou, X. W., Russell, C. T., Le, G., Fuselier, S. A., and Scudder, J. D. (1999). The polar cusp location and its dependence on dipole tilt. Geophys. Res. Lett., 26(3), 429–432. https://doi.org/10.1029/1998GL900312

Zhou, X. W., Russell, C. T., Le, G., Fuselier, S. A., and Scudder, J. D. (2000). Solar wind control of the polar cusp at high altitude. J. Geophys. Res., 105(A1), 245–251. https://doi.org/10.1029/1999ja900412

Zhou, X.-Z., Fritz, T. A., Zong, Q.-G., Pu, Z. Y., Hao, Y.-Q., and Cao, J.-B. (2006). The cusp: a window for particle exchange between the radiation belt and the solar wind. Ann. Geophys., 24(11), 3131–3137. https://doi.org/10.5194/angeo-24-3131-2006

Zong, Q.-G., Fritz, T. A., Zhang, H., Korth, A., Daly, P. W., Dunlop, M. W., Glassmeier, K.-H., Rème, H., and Balogh, A. (2004). Triple cusps observed by Cluster—Temporal or spatial effect?. Geophys. Res. Lett., 31(9), L09810. https://doi.org/10.1029/2003GL019128

Zong, Q.-G., Fritz, T. A., Spence, H., Zhang, H., Huang, Z. Y., Pu, Z. Y., Glassmeier, K.-H., Korth, A., Daly, P. W., … Rème, H. (2005). Plasmoid in the high latitude boundary/cusp region observed by Cluster. Geophys. Res. Lett., 32(1), L01101. https://doi.org/10.1029/2004GL020960

Zong, Q.-G., Fritz, T. A., Zhang, H., Fu, S. Y., Zhou, X. Z., Goldstein, M. L., Daly, P. W., Rème, H., Balogh, A., and Fazakerley, A. N. (2006). The magnetospheric cusp: structure and dynamics. In W. H. Ip, et al. (Eds.), Advances in Geosciences (pp. 173–189). Hackensack: World Scientific. https://doi.org/10.1142/9789812707185_0014222

[1]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[2]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[3]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[4]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

[5]

Stuart Crampin, Yuan Gao, 2018: Evidence supporting New Geophysics, Earth and Planetary Physics, 2, 173-188. doi: 10.26464/epp2018018

[6]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[7]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[8]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[9]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[10]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[11]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements

Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang