Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Cai, Y. Z., Xiao, Z. Y., Ding, C. Y., and Cui, J. (2020). Fine debris flows formed by the Orientale basin. Earth Planet. Phys., 4(3), 212–222doi: 10.26464/epp2020027

2020, 4(3): 212-222. doi: 10.26464/epp2020027

PLANETARY SCIENCES

Fine debris flows formed by the Orientale basin

1. 

Planetary Environmental and Astrobiological Laboratory, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519000, China

2. 

State Key Laboratory of Lunar and Planetary Sciences, Space Science Institute, Macau University of Science and Technology, Macau 999078, China

3. 

Center for Excellence in Comparative Planetology, Chinese Academy of Science, Hefei 230026, China

4. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

Corresponding author: ZhiYong Xiao, xiaozhiyong@mail.sysu.edu.cn

Received Date: 2020-01-24
Web Publishing Date: 2020-05-01

The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon. Its widespread secondaries, light plains, and near-rim melt flows have been well mapped in previous studies. Flow features are also widely associated with secondaries on planetary bodies, but their physical properties are not well constrained. The nature of flow features associated with large impact basins are critically important to understand the emplacement process of basin ejecta, which is one of the most fundamental processes in shaping the shallow crusts of planetary bodies. Here we use multisource remote sensing data to constrain the physical properties of flow features formed by the secondaries of the Orientale basin. The results suggest that such flows are dominated by centimeter-scale fine debris fines; larger boulders are not abundant. The shattering of target materials during the excavation of the Orientale basin, landing impact of ejecta that formed the secondaries, and grain comminution within the flows have substantially reduced particle sizes, forming the fine flows. The discovery of global-wide fine debris flows formed by large impact basins has profound implications to the interpretation of both previously-returned samples and remote sensing data.

Key words: Moon; Orientale; impact craters; impact cratering; ejecta

Bandfield, J. L., Ghent, R. R., Vasavada, A. R., Paige, D. A., Lawrence, S. J., and Robinson, M. S. (2011). Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner radiometer data. J. Geophys. Res.: Planets, 116(E12), E00H02. https://doi.org/10.1029/2011JE003866

Barker, M. K., Mazarico, E., Neumann, G. A., Zuber, M. T., Haruyama, J., and Smith, D. E. (2016). A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus, 273, 346–355. https://doi.org/10.1016/j.icarus.2015.07.039

Campbell, B. A., Campbell, D. B., Margot, J. L., Ghent, R. R., Nolan, M., Chandler, J., Carter, L. M., and Stacy, N. J. S. (2007). Focused 70-cm wavelength radar mapping of the Moon. IEEE Trans. Geosci. Remote Sens., 45(12), 4032–4042. https://doi.org/10.1109/TGRS.2007.906582

Campbell, B. A., Carter, L. M., Campbell, D. B., Nolan, M., Chandler, J., Ghent, R. R., Hawke, B. R., Anderson, R. F., and Wells, K. (2010). Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties. Icarus, 208(2), 565–573. https://doi.org/10.1016/j.icarus.2010.03.011

Campbell, D. B., Campbell, B. A., Carter, L. M., Margot, J. L., and Stacy, N. J. S. (2006). No evidence for thick deposits of ice at the lunar south pole. Nature, 443(7113), 835–837. https://doi.org/10.1038/nature05167

Carter, L. M., Campbell, B. A., Hawke, B. R., Campbell, D. B., and Nolan, M. C. (2009). Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon. J. Geophys. Res: Planets, 114(E11), E11004. https://doi.org/10.1029/2009JE003406

Fa, W. Z., and Eke, V. R. (2018). Unravelling the mystery of lunar anomalous craters using radar and infrared observations. J. Geophys. Res.: Planets, 123(8), 2119–2137. https://doi.org/10.1029/2018JE005668

Ghent, R. R., Leverington, D. W., Campbell, B. A., Hawke, B. R., and Campbell, D. B. (2005). Earth-based observations of radar-dark crater haloes on the Moon: Implications for regolith properties. J. Geophys. Res.: Planets, 110(E2), E02005. https://doi.org/10.1029/2004JE002366

Ghent, R. R., Campbell, B. A., Hawke, B. R., and Campbell, D. B. (2008). Earth-based radar data reveal extended deposits of the Moon’s Orientale basin. Geology, 36(5), 343–346. https://doi.org/10.1130/G24325A.1

Ghent, R. R., Gupta, V., Campbell, B. A., Ferguson, S. A., Brown, J. C. W., Fergason, R. L., and Carter, L. M. (2010). Generation and emplacement of fine-grained ejecta in planetary impacts. Icarus, 209(2), 818–835. https://doi.org/10.1016/j.icarus.2010.05.005

Ghent, R. R., Carter, L. M., Bandfield, J. L., Udovicic, C. J. T., and Campbell, B. A. (2016). Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations. Icarus, 273, 182–195. https://doi.org/10.1016/j.icarus.2015.12.014

Guo, D. J., Liu, J. Z., Head III, J. W., and Kreslavsky, M. A. (2018). Lunar orientale impact basin secondary craters: Spatial distribution, size-frequency distribution, and estimation of fragment size. J. Geophys. Res.: Planets, 123(6), 1344–1367. https://doi.org/10.1029/2017JE005446

Hartmann, W. K. (1964). Radial structures surrounding lunar basins, II: Orientale and other systems; Conclusions. Commun. Lunar Planet. Lab., 2(36), 175–192.

Hartmann, W. K. (2019). History of the terminal cataclysm paradigm: Epistemology of a planetary bombardment that never (?) happened. Geosciences, 9(7), 285. https://doi.org/10.3390/geosciences9070285

Hawke, B. R., Peterson, C. A., Blewett, D. T., Bussey, D. B. J., Lucey, P. G., Taylor, G. J., and Spudis, P. D. (2003). Distribution and modes of occurrence of lunar anorthosite. J. Geophys. Res.: Planets, 108(E6), 5050. https://doi.org/10.1029/2002JE001890

Hayne, P. O., Bandfield, J. L., Siegler, M. A., Vasavada, A. R., Ghent, R. R., Williams, J. P., Greenhagen, B. T., Aharonson, O., Elder, C. M., … Paige, D. A. (2017). Global regolith thermophysical properties of the moon from the Diviner lunar radiometer experiment. J. Geophys. Res.: Planets, 122(12), 2371–2400. https://doi.org/10.1002/2017JE005387

Johnson, B. C., Blair, D. M., Collins, G. S., Melosh, H. J., Freed, A. M., Taylor, G. F., Head, J. W., Wieczorek, M. A., Andrews-Hanna, A. C., … Zuber, M. T. (2016). Formation of the Orientale lunar multiring basin. Science, 354(6311), 441–444. https://doi.org/10.1126/science.aag0518

Lucchitta, B. K. (1972). The Apollo 17 landing site. Nature, 240(5379), 259–260. https://doi.org/10.1038/240259a0

Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F., and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499(7456), 59–61. https://doi.org/10.1038/nature12280

Melosh, H. J. (1984). Impact ejection, spallation, and the origin of meteorites. Icarus, 59(2), 234–260. https://doi.org/10.1016/0019-1035(84)90026-5

Melosh, H. J. (1989). Ejecta deposits. In H. Charnock et al. Impact Cratering: A Geologic Process (pp. 87–110). New York: Oxford Univ. Press.222

Melosh, H. J. (2011). Impact cratering. In H. J. Melosh (Ed.), Planetary Surface Processes (pp. 222–275). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511977848222

Melosh, H. J., Freed, A. M., Johnson, B. C., Blair, D. M., Andrews-Hanna, J. C., Neumann, G. A., Phillips, R. J., Smith, D. E., Solomon, S. C., … Zuber, M. T. (2013). The origin of lunar mascon basins. Science, 340(6140), 1552–1555. https://doi.org/10.1126/science.1235768

Meyer, H. M., Denevi, B. W., Boyd, A. K., and Robinson, M. S. (2016). The distribution and origin of lunar light plains around Orientale basin. Icarus, 273, 135–145. https://doi.org/10.1016/j.icarus.2016.02.014

Meyer, H. M., Denevi, B. W., Robinson, M. S., and Boyd, A. K. (2020). The global distribution of lunar light plains from the lunar reconnaissance orbiter camera. J. Geophys. Res.: Planets, 125(1), e2019JE006073. https://doi.org/10.1029/2019JE006073

Neish, C. D., Blewett, D. T., Harmon, J. K., Coman, E. I., Cahill, J. T. S., and Ernst, C. M. (2013). A comparison of rayed craters on the moon and mercury. J. Geophys. Res.: Planets, 118(10), 2247–2261. https://doi.org/10.1002/jgre.20166

Nozette, S., Spudis, P., Bussey, B., Jensen, R., Raney, K., Winters, H., Lichtenberg, C. L., Marinelli, W., Crusan, J., … Robinson, M. (2010). The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration. Space Sci. Rev., 150(1-4), 285–302. https://doi.org/10.1007/s11214-009-9607-5

Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys., 13(2), 337–362. https://doi.org/10.1029/RG013i002p00337

Paige, D. A., Foote, M. C., Greenhagen, B. T., Schofield, J. T., Calcutt, S., Vasavada, A. R., Preston, D. J., Taylor, F. W., Allen, C. C., … McCleese, D. J. (2010). The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Sci. Rev., 150(1), 125–160. https://doi.org/10.1007/s11214-009-9529-2

Petro, N. E., and Pieters, C. M. (2006). Modeling the provenance of the Apollo 16 regolith. J. Geophys. Res.: Planets, 111(E9), 1–13. https://doi.org/10.1029/2005JE002559

Pike, R. J. (1974). Ejecta from large craters on the Moon: Comments on the geometric model of McGetchin et al. Earth Planet. Sci. Lett., 23(3), 265–271. https://doi.org/10.1016/0012-821X(74)90114-9

Robinson, M. S., Brylow, S. M., Tschimmel, M., Humm, D., Lawrence, S. J., Thomas, P. C., Denevi, B. W., Bowman-Cisneros, E., Zerr, J., … Hiesinger, H. (2010). Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev., 150(1), 81–124. https://doi.org/10.1007/s11214-010-9634-2

Schultz, P. H., and Gault, D. E. (1985). Clustered impacts: Experiments and implications. J. Geophys. Res.: Solid Earth, 90(B5), 3701–3732. https://doi.org/10.1029/JB090iB05p03701

Spudis, P. D. (1994). The large impact process inferred from the geology of lunar multiring basins. In B. O. Dressler, et al. (Eds.), Large Meteorite Impacts and Planetary Evolution: Boulder (pp. 293). Boulder: Geological Society of America.222

Spudis, P. D., Wilhelms, D. E., and Robinson, M. S. (2011). The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res., 116, E00H03. https://doi.org/10.1029/2011JE003903

Wilhelms, D. E. (1987). The geologic history of the Moon. U. S. Geol. Surv. Prof. Pap., 1348, 1–302.

Xiao, Z. Y., and Werner, S. C. (2015). Size-frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res.: Planets, 120(12), 2277–2292. https://doi.org/10.1002/2015JE004860

Xiao, Z. Y., Zeng, Z. X., Ding, N., and Molaro, J. (2013). Mass wasting features on the Moon–how active is the lunar surface?. Earth Planet. Sci. Lett., 376, 1–11. https://doi.org/10.1016/j.jpgl.2013.06.015

Xiao, Z. Y. (2016). Size-frequency distribution of different secondary crater populations: 1. equilibrium caused by secondary impacts. J. Geophys. Res.: Planets, 121(12), 2404–2425. https://doi.org/10.1002/2016JE005139

Xie, M. G., and Zhu, M. H. (2016). Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins. Earth Planet. Sci. Lett., 440, 71–80. https://doi.org/10.1016/j.jpgl.2016.02.012

Zhao, H. X., and Magoulès, F. (2011). New parallel support vector regression for predicting building energy consumption. In 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (pp. 14–21). Paris: IEEE. https://doi.org/10.1109/SMDCM.2011.5949289222

[1]

ChunYu Ding, YuZhen Cai, ZhiYong Xiao, Yan Su, 2020: A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission, Earth and Planetary Physics, 4, 105-110. doi: 10.26464/epp2020016

[2]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[3]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[4]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Fine debris flows formed by the Orientale basin

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui