Citation:
Liu, L. B., and Wan, W. X. (2020). Recent ionospheric investigations in China (2018–2019). Earth Planet. Phys., 4(3), 179–205. http://doi.org/10.26464/epp2020028
2020, 4(3): 179-205. doi: 10.26464/epp2020028
Recent ionospheric investigations in China (2018–2019)
1. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
2. | Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China |
3. | Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100101, China |
4. | College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100019, China |
Since the release of the 2018 National Report of China on ionospheric research (
Aa, E., Huang, W. G., Liu, S. Q., Ridley, A., Zou, S. S., Shi, L. Q., Chen, Y. H., Shen, H., Yuan, T. J., … Wang, T. (2018a). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Wea., 16(3), 321–331. https://doi.org/10.1002/2017SW001776 |
Aa, E., Ridley, A. J., Huang, W. G., Zou, S. S., Liu, S. Q., Coster, A. J., and Zhang, S. R. (2018b). An ionosphere specification technique based on data ingestion algorithm and empirical orthogonal function analysis method. Space Wea., 16(9), 1410–1423. https://doi.org/10.1029/2018SW001987 |
Aa, E., Zou, S. S., Ridley, A. J., Zhang, S. R., Coster, A. J., Erickson, P. J., Liu, S. Q., and Ren, J. E. (2019). Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Wea., 17(2), 285–298. https://doi.org/10.1029/2018SW002101 |
Aa, E., Zou, S. S., Eastes, R., Karan, D. K., Zhang, S. R., Erickson, P. J., and Coster, A. J. (2020). Coordinated ground-based and space-based observations of equatorial plasma bubbles. J. Geophys. Res.: Space Phys., 125(1), e2019JA027569. https://doi.org/10.1029/2019JA027569 |
Bai, W. H., Wang, G. J., Sun, Y. Q., Shi, J. K., Yang, G. L., Meng, X. G., Wang, D. W., Du, Q. F., Wang, X. Y., … Liu, C. (2019). Application of the Fengyun 3 C GNSS occultation sounder for assessing the global ionospheric response to a magnetic storm event. Atmos. Meas. Tech., 12(3), 1483–1493. https://doi.org/10.5194/amt-12-1483-2019 |
Balan, N., Zhang, Q. H., Shiokawa, K., Skoug, R., Xing, Z. Y., Tulasi Ram, S., and Otsuka, Y. (2019). IpsDst of Dst storms applied to ionosphere–thermosphere storms and low-latitude aurora. J. Geophys. Res.: Space Phys., 124(11), 9552–9565. https://doi.org/10.1029/2019JA027080 |
Cai, Y. H., Yue, X. A., Wang, W. B., Zhang, S. R., Liu, L. B., Liu, H. X., and Wan, W. X. (2019). Long-term trend of topside ionospheric electron density derived from DMSP data during 1995–2017. J. Geophys. Res.: Space Phys., 124(12), 10708–10727. https://doi.org/10.1029/2019JA027522 |
Chen, G., Wang, J., Zhang, S. D., Deng, Z. X., Zhong, D. K., Wu, C., Jin, H., and Li, Y. X. (2018). Opposite latitudinal dependence of the premidnight and postmidnight oscillations in the electron density of midlatitude F layer. J. Geophys. Res.: Space Phys., 123(1), 796–807. https://doi.org/10.1002/2017JA024162 |
Chen, G. Y., Zhou, C., Liu, Y., Zhao, J. Q., Tang, Q., Wang, X., and Zhao, Z. Y. (2019). A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth, Planets Space, 71, 52. https://doi.org/10.1186/s40623-019-1031-9 |
Chen, J. J., and Lei, J. H. (2019). A simulation study on the latitudinal variations of ionospheric zonal electric fields under geomagnetically quiet conditions. J. Geophys. Res.: Space Phys., 124(2), 1444–1453. https://doi.org/10.1029/2018JA026174 |
Chen, T., Wan, W., Xiong, J., Yu, Y., Ren, Z., and Yue, X. (2019). A statistical approach to quantify atmospheric contributions to the ITEC WN4 structure over low latitudes. J. Geophys. Res.: Space Phys., 124(3), 2178–2197. https://doi.org/10.1029/2018JA026090 |
Chen, Y. D., Liu, L. B., Le, H. J., and Wan, W. X. (2018). Responses of solar irradiance and the ionosphere to an intense activity region. J. Geophys. Res.: Space Phys., 123(3), 2116–2126. https://doi.org/10.1002/2017JA024765 |
Chen, Y. D., Liu, L. B., Le, H. J., and Zhang, H. (2019). Interhemispheric conjugate effect in longitude variations of mid-latitude ion density. J. Space Wea. Space Climate, 9, A40. https://doi.org/10.1051/swsc/2019039 |
Chen, Z. W., Gong, Z. Q., Zhang, F., and Fang, G. Y. (2018). A new ionogram automatic scaling method. Radio Sci., 53(9), 1149–1164. https://doi.org/10.1029/2018RS006574 |
Dang, T., Lei, J. H., Wang, W. B., Zhang, B. Z., Burns, A., Le, H. J., Wu, Q., Ruan, H. B., Dou, X. K., and Wan W. X. (2018a). Global responses of the coupled thermosphere and ionosphere system to the August 2017 great American solar eclipse. J. Geophys. Res.: Space Phys., 123(8), 7040–7050. https://doi.org/10.1029/2018JA025566 |
Dang, T., Lei, J. H., Wang, W. B., Burns, A., Zhang, B. Z., and Zhang, S. R. (2018b). Suppression of the polar tongue of ionization during the 21 August 2017 solar eclipse. Geophys. Res. Lett., 45(7), 2918–2925. https://doi.org/10.1002/2018GL077328 |
Dang, T., Zhang, B. Z., Wiltberge, M., Wang, W. B., Varney, R., Dou, X. K., Wan, W. X., and Lei, J. H. (2018c). On the relation between soft electron precipitations in the cusp region and solar wind coupling functions. J. Geophys. Res.: Space Phys., 123(1), 211–226. https://doi.org/10.1002/2017JA024379 |
Dang, T., Lei, J. H., Wang, W. B., Wang, B. Y., Zhang, B. Z., Liu, J., Burns, A., and Nishimura, Y. (2019). Formation of double tongues of ionization during the 17 March 2013 geomagnetic storm. J. Geophys. Res.: Space Phys., 124(12), 10619–10630. https://doi.org/10.1029/2019JA027268 |
Ding, Z. H., Dai, L. D., Yang, S., Xu, Z. W., and Wu, J. (2018b). Preliminary measurement and analysis of the power spectra by the Qujing incoherent scatter radar. Prog. Geophys. (in Chinese) |
Ding, Z. H., Wu, J., Xu, B., Xu, Z. W., and Dai, L. D. (2018a). The Qujing incoherent scatter radar: system description and preliminary measurements. Earth, Planets Space, 70, 87. https://doi.org/10.1186/s40623-018-0859-8 |
Ding, Z. H., Dai, L. D., Yang, S., et al. (2020). Preliminary analysis of the ionospheric electron temperature variations of F layer in daytime using the Qujing incoherent scatter radar measurements. Chinese J. Geophys. (in Chinese) |
Fu, H. Y., Scales, W. A., Bernhardt, P. A., Jin, Y. Q., and Briczinski, S. J. (2018). Asymmetry in stimulated emission polarization and irregularity evolution during ionospheric electron gyroharmonic heating. Geophys. Res. Lett., 45(18), 9363–9371. https://doi.org/10.1029/2018GL078957 |
Fu, H. Y., and Scales, W. A. (2018). Kinetic modeling of stimulated electromagnetic emissions during ionospheric heating experiment. In 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Hangzhou: IEEE. http://doi.org/ 10.1109/ISAPE.2018.8634190222 |
Guo, D. J., Lei, J. H., Ridley, A., and Ren, D. X. (2019). Low-density cell of the thermosphere at high latitudes revisited. J. Geophys. Res.: Space Phys., 124(1), 521–533. https://doi.org/10.1029/2018JA025770 |
Hao, Y. Q., Li, Q. H., Zhang, D. H., Xiao, Z., Yang, G. L., and Huang, C. (2018). Using GNSS TEC technique to observe compression of the plasmasphere by an interplanetary shock. Sci. Sin. Technol. (in Chinese) |
He, J. H., Yue, X. A., Wang, W. B., and Wan, W. X. (2019). EnKF ionosphere and thermosphere data assimilation algorithm through a sparse matrix method. J. Geophys. Res.: Space Phys., 124(8), 7356–7365. https://doi.org/10.1029/2019JA026554 |
Huang, F. Q., Lei, J. H., Dou, X. K., Luan, X. L., and Zhong, J. H. (2018). Nighttime medium-scale traveling ionospheric disturbances from airglow imager and Global Navigation Satellite Systems observations. Geophys. Res. Lett., 45(1), 31–38. https://doi.org/10.1002/2017GL076408 |
Huang, F. Q., Otsuka, Y., Lei, J. H., Luan, X. L., Dou, X. K., and Li, G. Z. (2019). Daytime periodic wave-like structures in the ionosphere observed at low latitudes over the Asian-Australian sector using total electron content from Beidou geostationary satellites. J. Geophys. Res.: Space Phys., 124(3), 2312–2322. https://doi.org/10.1029/2018JA026443 |
Huang, H., Lu, X., Liu, L. B., Wang, W. B., and Li, Q. L. (2018). Transition of interhemispheric asymmetry of equatorial ionization anomaly during solstices. J. Geophys. Res.: Space Phys., 123(12), 10283–10300. https://doi.org/10.1029/2018JA026055 |
Jiang, C. H., Yang, G. B., Liu, J., and Zhao, Z. Y. (2019a). A study of the F2 layer stratification on ionograms using a simple model of TIDs. J. Geophys. Res.: Space Phys., 124(2), 1317–1327. https://doi.org/10.1029/2018JA026040 |
Jiang, C. H., Hu, H., Yang, G. B., Liu, J., and Zhao, Z. Y. (2019b). A statistical study of the F2 layer stratification at the northern equatorial ionization anomaly. Adv. Space Res., 63(10), 3167–3176. https://doi.org/10.1016/j.asr.2019.01.038 |
Jimoh, O., Lei, J. H., Zhong, J. H., Owolabi, C., Luan, X. L., and Dou, X. (2019). Topside ionospheric conditions during the 7–8 September 2017 geomagnetic storm. J. Geophys. Res.: Space Phys., 124(11), 9381–9404. https://doi.org/10.1029/2019JA026590 |
Jin, Y. Y., Xing, Z. Y., Zhang, Q. H., Wang, Y., and Ma, Y. Z. (2019). Polar cap patches observed by the EISCAT Svalbard Radar: A statistical study of its dependence on the solar wind and IMF conditions. J. Atmos. Solar-Terr. Phys., 192, 104768. https://doi.org/10.1016/j.jastp.2018.01.011 |
Lan, J. P., Ning, B. Q., Li, G. Z., Zhu, Z. P., Hu, L. H., and Sun, W. J. (2018). Observation of short-period ionospheric disturbances using a portable digital ionosonde at Sanya. Radio Sci., 53(12), 1521–1532. https://doi.org/10.1029/2018RS006699 |
Lan, T., Zhang, Y. N., Jiang, C. H., Yang, G. B., and Zhao, Z. Y. (2018). Automatic identification of Spread F using decision trees. J. Atmos. Solar-Terr. Phys., 179, 389–395. https://doi.org/10.1016/j.jastp.2018.09.007 |
Lan, T., Jiang, C. H., Yang, G. B., Zhang, Y. N., Liu, J., and Zhao, Z. Y. (2019). Statistical analysis of low-latitude spread F observed over Puer, China, during 2015–2016. Earth, Planets Space, 71, 138. https://doi.org/10.1186/s40623-019-1114-7 |
Le, H. J., Lou, L. B., Chen, Y. D., and Zhang, H. (2019). Anomaly distribution of ionospheric total electron content responses to some solar flares. Earth Planet. Phys., 3(6), 481–488. https://doi.org/10.26464/epp2019053 |
Lei, J. H., Dang, T., Wang, W. B., Burns, A., Zhang, B. Z., and Le, H. J. (2018b). Long-lasting response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse. J. Geophys. Res.: Space Phys., 123(5), 4309–4316. https://doi.org/10.1029/2018JA025460 |
Lei, J. H., Huang, F. Q., Chen, X. T., Zhong, J. H., Ren, D. X., Wang, W. B., Yue, X. A., Luan, X. L., Jia, M. J., … Xue, X. H. (2018a). Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017?. J. Geophys. Res.: Space Phys., 123(4), 3217–3232. https://doi.org/10.1029/2017JA025166 |
Li, G. Z., Ning, B. Q., Abdu, M. A., Wang, C., Otsuka, Y., Wan, W. X., Lei, J. H., Nishioka, M., Tsugawa, T., … Yan, C. X. (2018a). Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet. Sci., 5, 11. https://doi.org/10.1186/s40645-018-0172-y |
Li, G. Z., Ning, B. Q., Li, A., Yang, S. P., Zhao, X. K., Zhao, B. Q., and Wan, W. X. (2018b). First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations. Earth Planet. Phys., 2(1), 15–21. https://doi.org/10.26464/epp2018002 |
Li, G. Z., Ning, B. Q., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., and Chen, J. S. (2018c). Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W On 7–8 September 2017. J. Geophys. Res.: Space Phys., 123(9), 7985–7998. https://doi.org/10.1029/2018JA025871 |
Li, G. Z., Ning, B. Q., Zhao, X. K., Sun, W. J., Hu, L. H., Xie, H. Y., Liu, K. K., and Ajith, K. K. (2019). Low latitude ionospheric TEC oscillations associated with periodic changes in IMF Bz polarity. Geophys. Res. Lett., 46(16), 9379–9387. https://doi.org/10.1029/2019GL084428 |
Li, M., Yuan, Y. B., Wang, N. B., Liu, T., and Chen, Y. C. (2018). Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps. J. Geod., 92(8), 889–903. https://doi.org/10.1007/s00190-017-1101-3 |
Li, N., Lei, J. H., Luan, X. L., Chen, J. S., Zhong, J. H., Wu, Q., Xu, Z. W., and Lin, L. K. (2019). Responses of the D region ionosphere to solar flares revealed by MF radar measurements. J. Atmos. Solar-Terr. Phys., 182, 211–216. https://doi.org/10.1016/j.jastp.2018.11.014 |
Li, Q. H., Hao, Y. Q., Zhang, D. H., and Xiao, Z. (2018). Nighttime enhancements in the midlatitude ionosphere and their relation to the plasmasphere. J. Geophys. Res.: Space Phys., 123(9), 7686–7696. https://doi.org/10.1029/2018JA025422 |
Li, Q. L., Liu, L. B., Balan, N., Huang, H., Zhang, R. L., Chen, Y. D., and Le, H. J. (2018). Longitudinal structure of the midlatitude ionosphere using COSMIC electron density profiles. J. Geophys. Res.: Space Phys., 123(10), 8766–8777. https://doi.org/10.1029/2017JA02492 |
Li, Q. L., Liu, L. B., Jiang, J. Z., Li, W. B., Huang, H., Yu, Y., Li, J. C., Zhang, R. L., Le, H. J., and Chen, Y. D. (2019). α-Chapman scale height: longitudinal variation and global modeling. J. Geophys. Res.: Space Phys., 124, 2083–2098. https://doi.org/10.1029/2018JA026286 |
Li, Z. X., Luan, X. L., and Ren, D. X. (2019). Longitudinal variations of the occurrence probability of the ionospheric F1 layer peak at middle and high latitudes. J. Geophys. Res.: Space Phys., 124(11), 9592–9609. https://doi.org/10.1029/2018JA026236 |
Liu, G. Q., Huang, W. G., Shen, H., Aa, E., Li, M. X., Liu, S. Q., and Luo, B. X. (2019). Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector. Space Wea., 17(8), 1230–1240. https://doi.org/10.1029/2019SW002160 |
Liu, H. T., Ding, F., Yue, X. A., Zhao, B. Q., Song, Q., Wan, W. X., Ning, B. Q., and Zhang, K. K. (2018). Depletion and traveling ionospheric disturbances generated by two launches of China’s Long March 4B rocket. J. Geophys. Res.: Space Phys., 123(12), 10319–10330. https://doi.org/10.1029/2018JA026096 |
Liu, J., Zhang, D. H., Coster, A. J., Zhang, S. R., Ma, G. Y., Hao, Y. Q., and Xiao, Z. (2019a). A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm. Ann. Geophys., 37(4), 673–687. https://doi.org/10.5194/angeo-37-673-2019 |
Liu, J., Zhang, D. H., Hao, Y. Q., and Xiao, Z. (2019b). The comparison of lunar tidal characteristics in the low-latitudinal ionosphere between East Asian and American sectors during stratospheric sudden warming events: 2009-2018. J. Geophys. Res.: Space Phys., 124(8), 7013–7033. https://doi.org/10.1029/2019JA026722 |
Liu, K. K., Li, G. Z., and Ning, B. Q. (2019). Possible evidence for small-scale wave seeding of equatorial plasma bubbles. Adv. Space Res., 63(11), 3612–3620. https://doi.org/10.1016/j.asr.2019.02.025 |
Liu, L. B., and Wan, W. X. (2018). Chinese ionospheric investigations in 2016–2017. Earth Planet. Phys., 2(2), 89–111. https://doi.org/10.26464/epp2018011 |
Liu, L. B., Le, H. J., Chen, Y. D., Zhang, R. L., Wan, W. X., and Zhang, S. R. (2019). New aspects of the ionospheric behavior over Millstone Hill during the 30-day incoherent scatter radar experiment in October 2002. J. Geophys. Res.: Space Phys., 124(7), 6288–6295. https://doi.org/10.1029/2019JA026806 |
Liu, M. R., Zhou, C., Wang, X., Ni, B. B., and Zhao, Z. Y. (2018). Numerical simulation of oblique ionospheric heating by powerful radio waves. Ann. Geophys., 36(3), 855–866. https://doi.org/10.5194/angeo-36-855-2018 |
Liu, Y., Lei, J. H., Yu, P. C., Liu, P. F., Ling, Y. M., Zhang, Z. K., and Cao, J. X. (2018a). Spontaneous emission of Alfvénic Branch oscillations from a strong inhomogeneous plasma flow. Geophys. Res. Lett., 45(1), 64–70. https://doi.org/10.1002/2017GL075611 |
Liu, Y., Lei, J. H., Yu, P. C., Ling, Y. M., Zhang, Z. K., Liu, P. F., and Cao, J. X. (2018b). Laboratory excitation of the Kelvin-Helmholtz instability in an ionospheric-like plasma. Geophys. Res. Lett., 45(9), 3846–3853. https://doi.org/10.1029/2018GL077550 |
Liu, Y., Zhou, C., Tang, Q., Li, Z. Q., Song, Y., Qing, H. Y., Ni, B. B., and Zhao, Z. Y. (2018c). The seasonal distribution of sporadic E layers observed from radio occultation measurements and its relation with wind shear measured by TIMED/TIDI. Adv. Space Res., 62(2), 426–439. https://doi.org/10.1016/j.asr.2018.04.026 |
Liu, Y., Zhou, C., Tang, Q., Chen, G. Y., and Zhao, Z. Y. (2019a). Geomagnetic conjugate observations of ionospheric disturbances in response to a North Korean underground nuclear explosion on 3 September 2017. Ann. Geophys., 37(3), 337–345. https://doi.org/10.5194/angeo-37-337-2019 |
Liu, Y., Zhou, C., Tang, Q., Kong, J., Gu, X. D., Ni, B. B., Yao, Y., and Zhao, Z. Y. (2019b). Evidence of mid- and low-latitude nighttime ionospheric E–F coupling: coordinated observations of sporadic E layers, F -region field-aligned irregularities, and medium-scale traveling ionospheric disturbances. IEEE Trans. Geosci. Remote Sens., 57(10), 7547–7557. https://doi.org/10.1109/TGRS.2019.2914059 |
Liu, Z. D., Fang, H. X., Weng, L. B., Wang, S. C., Niu, J., and Meng, X. (2019). A comparison of ionosonde measured foF2 and IRI-2016 predictions over China. Adv. Space Res., 63(6), 1926–1936. https://doi.org/10.1016/j.asr.2019.01.017 |
Luo, W. H., Xiong, C., Zhu, Z. P., and Mei, X. F. (2018). Onset condition of plasma density enhancements: A case study for the effects of meridional wind during 17–18 August 2003. J. Geophys. Res.: Space Phys., 123(8), 6714–6726. https://doi.org/10.1029/2018JA025191 |
Lv, L. B., Li, Q. L., Hao, S. J., and Wu, Z. S. (2018). Study on scattering characteristic of AFAI in ionospheric heating by powerful high frequency waves. Chinese J. Geophys. (in Chinese) |
Ma, Y. Z., Zhang, Q. H., Xing, Z. Y., Jayachandran, P. T., Moen, J., Heelis, R. A., and Wang, Y. (2018a). Combined contribution of solar illumination, solar activity, and convection to ion upflow above the polar cap. J. Geophys. Res.: Space Phys., 123(5), 4317–4328. https://doi.org/10.1029/2017JA024974 |
Ma, Y. Z., Zhang, Q. H., Xing, Z. Y., Heelis, R. A., Oksavik, K., and Wang, Y. (2018b). The ion/electron temperature characteristics of polar cap classical and hot patches and their influence on ion upflow. Geophys. Res. Lett., 45(16), 8072–8080. https://doi.org/10.1029/2018GL079099 |
Meng, X., Fang, H. X., Li, G. Z., Weng, L. B., and Wang, S. C. (2019). Observations of evolution-type band-like structures of F region irregularities. J. Geophys. Res.: Space Phys., 124(2), 1426–1443. https://doi.org/10.1029/2018JA026091 |
Mo, X. H., and Zhang, D. H. (2018). Lunar tidal modulation of periodic meridional movement of equatorial ionization anomaly crest during sudden stratospheric warming. J. Geophys. Res.: Space Phys., 123(2), 1488–1499. https://doi.org/10.1002/2017JA024718 |
Mo, X. H., Zhang, D. H., Liu, J., Hao, Y. Q., Ye, J. F., Qin, J. S., Wei, W. X., and Xiao, Z. (2018). Morphological characteristics of equatorial ionization anomaly crest over Nanning region. Radio Sci., 53(1), 37–47. https://doi.org/10.1002/2017RS006386 |
Owolabi, C., Lei, J. H., Bolaji, O. S., Jimoh, O., Ruan, H. B., Li, N., Niu, X. J., and Yoshikawa, A. (2019). Investigation on the variability of the geomagnetic daily current during sudden stratospheric warmings. J. Geophys. Res.: Space Phys., 124(7), 6156–6172. https://doi.org/10.1029/2019JA026667 |
Priyadarshi, S., Zhang, Q. H., and Wang, Y. (2019). An empirical L-band scintillation model for a mid-latitude station, Weihai, China during the low solar activity period. Sci. China: Technol. Sci., 62(7), 1182–1190. https://doi.org/10.1007/s11431-017-9266-x |
Ren, D. X., Lei, J. H., Wang, W. B., Burns, A., Luan, X. L., and Dou, X. K. (2019). A simulation study on the time delay of daytime thermospheric temperature response to the 27-day solar EUV flux variation. J. Geophys. Res.: Space Phys., 124(11), 9184–9193. https://doi.org/10.1029/2019JA027000 |
Ruan, H. B., Lei, J. H., Dou, X. K., Liu, S. Q., and Aa, E. C. (2018). An exospheric temperature model based on CHAMP observations and TIEGCM simulations. Space Wea., 16(2), 147–156. https://doi.org/10.1002/2017SW001759 |
Ruan, H. B., and Lei, J. H. (2019). Quantifying the impact of satellite sampling on the dynamic modeling of the upper thermosphere. Space Wea., 17(5), 757–766. https://doi.org/10.1029/2018SW002120 |
She, C. L., Yue, X. A., Hu, L. H., and Zhang, F. G. (2020). Estimation of ionospheric total electron content from a multi-GNSS station in China. IEEE Trans. Geosci. Remote Sens., 58(2), 852–860. https://doi.org/10.1109/TGRS.2019.2941049 |
Sui, Y., Fu, H. Y., Xu, F., Wang, R., and Jin, Y. Q. (2019). Estimation of Ionospheric Effects on Spacebore Twinsar-L SAR Interferograms. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 2081-2084). Yokohama: IEEE. DOI: 10.1109/IGARSS.2019.8899905222 |
Sun, Y. Y., Liu, H. X., Miyoshi, Y., Liu, L. B., and Chang, L. C. (2018a). El Niño–Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere. Earth, Planets Space, 70, 85. https://doi.org/10.1186/s40623-018-0832-6 |
Sun, Y. Y., Liu, J. Y., Lin, C. C. H., Lin, C. Y., Shen, M. H., Chen, C. H., Chen, C. H., and Chou, M. Y. (2018b). Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017. Geophys. Res. Lett., 45(2), 538–544. https://doi.org/10.1002/2017GL075926 |
Sun, Y. Y. (2019). GNSS brings us back on the ground from ionosphere. Geosci. Lett., 6, 14. https://doi.org/10.1186/s40562-019-0144-0 |
Sun, Y. Y., Liu, H. X., Miyoshi, Y., Chang, L. C., and Liu, L. B. (2019a). El Niño– Southern Oscillation effect on ionospheric tidal/SPW amplitude in 2007–2015 FORMOSAT-3/COSMIC observations. Earth, Planets Space, 71, 35. https://doi.org/10.1186/s40623-019-1009-7 |
Sun, Y. Y., Liu, J. Y., Wu, T. Y., and Chen, C. H. (2019b). Global distribution of persistence of total electron content anomaly. Atmosphere, 10(6), 297. https://doi.org/10.3390/atmos10060297 |
Tian, Y. Y., Hao, Y. Q., Zhang, D. H., and Xiao, Z. (2019). Single crest phenomenon in the equatorial ionospheric anomaly region and its longitudinal distribution caused by nonmigrating tides. Chinese J. Geophys. (in Chinese) |
Wang, G. J., Shi, J. K., Bai, W. H., Galkin, I., Wang, Z., Sun, Y. Q. (2019). Global ionospheric scintillations revealed by GPS radio occultation data with FY3C satellite before midnight during the March 2015 storm. Adv. Space Res., 63(10), 3119–3130. https://doi.org/10.1016/j.asr.2019.01.028 |
Wang, H., Zhang, K. D., Zheng, Z. C., and Ridley, A. J. (2018). The effect of subauroral polarization streams on the mid-latitude thermospheric disturbance neutral winds: a universal time effect. Ann. Geophys., 36(2), 509–525. https://doi.org/10.5194/angeo-36-509-2018 |
Wang, H., Lühr, H., Zheng, Z. C., and Zhang, K. D. (2019). Dependence of the equatorial electrojet on auroral activity and in situ solar insulation. J. Geophys. Res.: Space Phys., 124(12), 10659–10673. https://doi.org/10.1029/2019JA027320 |
Wang, N., Guo, L. X., Zhao, Z. W., Ding, Z. H., and Lin, L. K. (2018). Spread-F occurrences and relationships with foF2 and h’F at low- and mid-latitudes in China. Earth, Planets Space, 70, 59. https://doi.org/10.1186/s40623-018-0821-9 |
Wang, N., Guo, L. X., Ding, Z. H., Zhao, Z. W., Xu, Z. W., Xu, T., and Hu, Y. L. (2019a). Longitudinal differences in the statistical characteristics of ionospheric Spread-F occurrences at midlatitude in Eastern Asia. Earth, Planets Space, 71, 47. https://doi.org/10.1186/s40623-019-1026-6 |
Wang, N., Guo, L. X., Zhao, Z. W., Ding, Z. H., Xu, T., and Sun, S. J. (2019b). A comparative study of ionospheric Spread-F and scintillation at low- and mid-latitudes in China during the 24th solar cycle. Adv. Space Res., 63(2), 986–998. https://doi.org/10.1016/j.asr.2018.10.010 |
Wang, S. C., Huang, S. X., and Fang, H. X. (2018). Dual-parameter regularization method in three-dimensional ionospheric reconstruction. Ann. Geophys., 36(5), 1255–1266. https://doi.org/10.5194/angeo-36-1255-2018 |
Wang, S. C., Huang, S. X., Lu, S., and Yan, B. (2019). 3-D ionospheric tomography using model function in the modified L-curve method. IEEE Trans. Geosci. Remote Sens., 57(6), 3135–3147. https://doi.org/10.1109/TGRS.2018.2881124 |
Wang, X., and Zhou, C. (2018). Electron density inversed by plasma lines induced by suprathermal electron in the ionospheric modification experiment. Adv. Space Res., 61(9), 2252–2258. https://doi.org/10.1016/j.asr.2018.02.001 |
Wang, X., Zhou, C., Liu, M. R., Honary, F., Ni, B. B., and Zhao, Z. Y. (2018a). Threshold of parametric instability in the ionospheric heating experiments. Plasma Sci. Technol., 20(11), 115301. https://doi.org/10.1088/2058-6272/aac71d |
Wang, X., Zhou, C., Liu, M. R., Ni, B. B., and Zhao, Z. Y. (2018b). Density disturbance of small-scale field-aligned irregularities in the ionosphere heating experiments. Plasma Sci. Technol., 20(12), 125001. https://doi.org/10.1088/2058-6272/aadd45 |
Wang, X., Zhou, C., Xu, T., Honary, F., Rietveld, M., and Frolov, V. (2019). Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association. Earth Planet. Phys., 3(5), 391–399. https://doi.org/10.26464/epp2019042 |
Wang, Y., Zhang, Q. H., Jayachandran, P. T., Moen, J., Xing, Z. Y., Chadwick, R., Ma, Y. Z., Ruohoniemi, J. M., and Lester, M. (2018). Experimental evidence on the dependence of the standard GPS phase scintillation index on the ionospheric plasma drift around noon sector of the polar ionosphere. J. Geophys. Res.: Space Phys., 123(3), 2370–2378. https://doi.org/10.1002/2017JA024805 |
Wang, Z., Liu, H. X., Shi, J. K., Wang, G. J., and Wang, X. (2019). Plasma blobs concurrently observed with bubbles in the Asian-Oceanian sector during solar maximum. J. Geophys. Res.: Space Phys., 124(8), 7062–7071. https://doi.org/10.1029/2018JA026373 |
Weng, L. B., Lei, J. H., Doornbos, E., Fang, H. X., and Dou, X. K. (2018). Seasonal variations of thermospheric mass density at dawn/dusk from GOCE observations. Ann. Geophys., 36(2), 489–496. https://doi.org/10.5194/angeo-36-489-2018 |
Weng, L. B., Lei, J. H., Liu, H. X., Dou, X. K., and Fang, H. X. (2019). Thermospheric density cells at high latitudes as observed by GOCE satellite: Preliminary results. Geophys. Res. Lett., 46(21), 11615–11621. https://doi.org/10.1029/2019GL084951 |
Wu, J., Wu, J., Rietveld, M. T., Haggstrom, I., Xu, Z. W., and Zhao, H. S. (2018). The extending of observing altitudes of plasma and ion lines during ionospheric heating. J. Geophys. Res.: Space Phys., 123(1), 918–930. https://doi.org/10.1002/2017JA024809 |
Wu, J., Wu, J., Rietveld, M. T., Haggstrom, I., Xu, Z. W., Zhang, Y. B., Xu, T., and Zhao, H. S. (2019). The intensities of high frequency-enhanced plasma and ion lines during ionospheric heating. J. Geophys. Res.: Space Phys., 124(1), 603–615. https://doi.org/10.1029/2018JA025918 |
Wu, K., Xu, J. Y., Xiong, C., and Yuan, W. (2018). Edge plasma enhancements of equatorial plasma depletions observed by all-sky imager and the C/NOFS satellite. J. Geophys. Res.: Space Phys., 123(10), 8835–8849. https://doi.org/10.1029/2018JA025809 |
Wu, Y. W., Liu, R. Y., Zhang, B. C., Wang, W. B., Zhang, S. R., Zhang, Q. H., Hu, H. Q., and Lu, J. Y. (2019). The UT variation of the polar ionosphere based on COSMIC observations. J. Geophys. Res.: Space Phys., 124(4), 3139–3148. https://doi.org/10.1029/2018JA026106 |
Xie, H. Y., Li, G. Z., Zhao, X. K., Hu, L. H., Wu, B. Y., and Ning, B. Q. (2018). Statistical study on the occurrences of postsunset ionospheric E, valley, and F region irregularities and their correlations over low-latitude Sanya. J. Geophys. Res.: Space Phys., 123(11), 9873–9880. https://doi.org/10.1029/2018JA025729 |
Xing, Z. Y., Zhang, Q. H., Han, D. S., Zhang, Y. L., Sato, N., Zhang, S. R., Hu, Z. J., Wang, Y., and Ma, Y. Z. (2018). Conjugate observations of the evolution of polar cap arcs in both hemispheres. J. Geophys. Res.: Space Phys., 123(3), 1794–1805. https://doi.org/10.1002/2017JA024272 |
Xu, L., Cheng, J., and Xu, J. S. (2019). Statistical features of TEC and ionospheric scintillation over the low latitude of China. Adv. Space Res., 64(10), 2164–2175. https://doi.org/10.1016/j.asr.2019.07.011 |
Xu, T., Rietveld, M., Wu, J., Ma, G. L., Hu, Y. L., Wu, J., and Li, Q. L. (2019). Polarization analysis of ELF/VLF waves generated by beating of two HF waves in the polar ionosphere. J. Atmos. Solar-Terr. Phys., 195, 105133. https://doi.org/10.1016/j.jastp.2019.105133 |
Yan, X. X., Sun, Y. Y., Yu, T., Liu, J. Y., Qi, Y. F., Xia, C. L., Zuo, X. M., and Yang, N. (2018). Stratosphere perturbed by the 2011 Mw9.0 Tohoku earthquake. Geophys. Res. Lett., 45(19), 10050–10056. https://doi.org/10.1029/2018GL079046 |
Yan, X. X., Yu, T., Sun, Y. Y., Xia, C. L., Zuo, X. M., Yang, N., Qi, Y. F., and Wang, J. (2020). Vertical structure of the ionospheric response following the Mw 7.9 Wenchuan earthquake on 12 May 2008. Pure Appl. Geophys., 177(1), 95–107. https://doi.org/10.1007/s00024-019-02175-7 |
Yang, G. B., Jiang, C. H., Lan, T., Huang, W. G., and Zhao, Z. Y. (2018). Ionosonde observations of daytime spread F at middle latitudes during a geomagnetic storm. J. Atmos. Solar-Terr. Phys., 179, 174–180. https://doi.org/10.1016/j.jastp.2018.07.009 |
Yang, J. T., Li, Q. L., Hao, S. J., Wang, J. G. (2018a). Theoretical analysis of parameter optimization for lower-ionosphere modulated excitation VLF/ELF waves. Chinese J. Geophys. (in Chinese) |
Yang, J. T., Li, Q. L., Wang, J. G., Hao, S. J., and Ma, G. L. (2018b). The polarization characteristics of ELF/VLF waves generated via HF heating experiments of the ionosphere by EISCAT. Phys. Plasmas, 25(9), 092902. https://doi.org/10.1063/1.5044611 |
Yang, J. T., Wang, J. G., Li, Q. L., Wu, J., Che, H. Q., Ma, G. L., and Hao, S. J. (2019). Experimental comparisons between AM and BW modulation heating excitation of ELF/VLF waves at EISCAT. Phys. Plasmas, 26(8), 082901. https://doi.org/10.1063/1.5095537 |
Yang, N., Le, H. J., Liu, L. B., and Zhang, R. L. (2018). Statistical behavior of the longitudinal variations of the evening topside mid-latitude trough position in both Northern and Southern Hemispheres. J. Geophys. Res.: Space Phys., 123(5), 3983–3997. https://doi.org/10.1029/2017JA025048 |
Yang, N., Yu, T., Le, H. J., Liu, L. B., Sun, Y. Y., Xia, C. L., Zuo, X. M., Yan, X. X., and Wang, J. (2019). The high-latitude trough in the Southern Hemisphere observed by Swarm — A satellite. J. Geophys. Res.: Space Phys., 124(11), 9475–9485. https://doi.org/10.1029/2019JA027169 |
Yang, S. G., Zhang, B. C., Liu, Y., Zhu, Y. G., Yang, X., Tian, C., Yue, F. L., Xu, P. K., and Jiang, J. M. (2019). Case studies: A possible mechanism for F2-lacuna formation. Adv. Space Res., 64(11), 2290–2304. https://doi.org/10.1016/j.asr.2019.08.036 |
Yu, T., Miyoshi, Y., Xia, C. L., Zuo, X. M., Yan, X. X., Yang, N., Sun, Y. Y., Yue, X. A., and Mao, T. (2018a). Solar dependence of equatorial F region irregularities observed by COSMIC radio occultations. J. Geophys. Res.: Space Phys., 123(11), 9775–9787. https://doi.org/10.1029/2018JA025936 |
Yu, T., Li, M. Y., Xia, C. L., Zuo, X. M., Liu, Z. Z., and Zhao, B. Q. (2018b). A new method for deriving equatorial plasma bubble velocity by tracing OI 630 nm all-sky images. J. Geophys. Res.: Space Phys., 123(11), 9619–9633. https://doi.org/10.1029/2018JA025332 |
Yu, T. T., Ren, Z. P., Yue, X. A., Yu, Y., and Wan, W. X. (2019). Comparison of thermospheric density between GUVI dayside limb data and CHAMP satellite observations: Based on empirical model. J. Geophys. Res.: Space Phys., 124(3), 2165–2177. https://doi.org/10.1029/2018JA026229 |
Yue, X. A., Hu, L. H., Wei, Y., Wan, W. X., and Ning, B. Q. (2018). Ionospheric trend over Wuhan during 1947–2017, Comparison between simulation and observation. J. Geophys. Res.: Space Phys., 123(2), 1396–1409. https://doi.org/10.1002/2017JA024675 |
Zhang, K. D., Wang, W. B., Wang, H., Dang, T., Liu, J., and Wu, Q. (2018). The longitudinal variations of upper thermospheric zonal winds observed by the CHAMP satellite at low and midlatitudes. J. Geophys. Res.: Space Phys., 123(11), 9625–9668. https://doi.org/10.1029/2018JA025463 |
Zhang, K. D., Liu, J., Wang, W. B., and Wang, H. (2019). The effects of IMF B z periodic oscillations on thermospheric meridional winds. J. Geophys. Res.: Space Phys., 124(7), 5800–5815. https://doi.org/10.1029/2019JA026527 |
Zhang, M., Zhang, D. H., Hao, Y. Q., and Xiao, Z. (2019). A statistical study on L-band ionospheric amplitude scintillation in Shenzhen during 2011–2016. Sci. Sin. Technol. (in Chinese) |
Zhang, Q. H., Lockwood, M., Foster, J. C., Zong, Q. G., Dunlop, M. W., Zhang, S. R., Moen, J., and Zhang, B. C. (2018). Observations of the step-like accelerating processes of cold ions in the reconnection layer at the dayside magnetopause. Sci. Bull., 63(1), 31–37. https://doi.org/10.1016/j.scib.2018.01.003 |
Zhang, R. L., Liu, L. B., Balan, N., Le, H. J., Chen, Y. D., and Zhao, B. Q. (2018). Equatorial ionospheric disturbance field-aligned plasma drifts observed by C/NOFS. J. Geophys. Res.: Space Phys., 123(5), 4192–4201. https://doi.org/10.1029/2018JA025273 |
Zhang, R. L., Liu, L. B., Le, H. J., and Chen, Y. D. (2019). Equatorial ionospheric electrodynamics over Jicamarca during the 6–11 September 2017 space weather event. J. Geophys. Res.: Space Phys., 124(2), 1292–1306. https://doi.org/10.1029/2018JA026295 |
Zhao, B. Q., Yang, C. J., Cai, Y. H., Jin, Y. Y., Yu, L., Ding, F., Yue, X. N., and Wan, W. X. (2019). East–west difference in the ionospheric response of the March 1989 great magnetic storm throughout East Asian region. J. Geophys. Res.: Space Phys., 124(11), 9364–9380. https://doi.org/10.1029/2019JA027108 |
Zhao, C. H., Yuan, Y. B., Zhang, B. C., and Li, M. (2019). Ionosphere sensing with a low-cost, single-frequency, multi-GNSS receiver. IEEE Trans. Geosci. Remote Sens., 57(2), 881–892. https://doi.org/10.1109/TGRS.2018.2862623 |
Zhao, J. Q., and Zhou, C. (2018). On the optimal height of ionospheric shell for single-site TEC estimation. GPS Solut., 22(2), 48. https://doi.org/10.1007/s10291-018-0715-0 |
Zhao, J. Q., and Zhou, C. (2019). Validation and application of optimal ionospheric shell height model for single-site estimation of total electron content. Ann. Geophys., 37(2), 263–271. https://doi.org/10.5194/angeo-37-263-2019 |
Zhao, X. R., Sheng, Z., Li, J. W., Yu, H., and Wei, K. J. (2019). Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res.: Atmos., 124(20), 10592–10607. https://doi.org/10.1029/2019JD030754 |
Zhong, J. H., Lei, J. H., Yue, X. A., Luan, X. L., and Dou, X. K. (2019a). Middle-latitudinal band structure observed in the nighttime ionosphere. J. Geophys. Res.: Space Phys., 124(7), 5857–5873. https://doi.org/10.1029/2018JA026059 |
Zhong, J. H., Lei, J. H., Yue, X. A., Wang, W. B., Burns, A. G., Luan, X. L., and Dou, X. K. (2019b). Empirical orthogonal function analysis and modeling of the topside ionospheric and plasmaspheric TECs. J. Geophys. Res.: Space Phys., 124(5), 3681–3698. https://doi.org/10.1029/2019JA026691 |
Zhou, C., Liu, Y., Tang, Q., Gu, X. D., Ni, B. B., and Zhao, Z. Y. (2018a). Investigation on the occurrence of mid-latitude E-region irregularity by Wuhan VHF radar and its relationship with sporadic E layer. IEEE Trans. Geosci. Remote Sens., 56(12), 7207–7216. https://doi.org/10.1109/TGRS.2018.2849359 |
Zhou, C., Tang, Q., Huang, F. Q., Liu, Y., Gu, X. D., Lei, J. H., Ni, B. B., and Zhao, Z. Y. (2018b). The simultaneous observations of nighttime ionospheric E region irregularities and F region medium-scale traveling ionospheric disturbances in midlatitude China. J. Geophys. Res.: Space Phys., 123(6), 5195–5209. https://doi.org/10.1029/2018JA025352 |
[1] |
Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042 |
[2] |
Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025 |
[3] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
[4] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[5] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[6] |
Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045 |
[7] |
Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003 |
[8] |
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009 |
[9] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[10] |
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002 |
[11] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[12] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[13] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[14] |
Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044 |
[15] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
[16] |
QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011 |
[17] |
LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011 |
[18] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[19] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[20] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)