Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, Y., Zhou, C., Xu, T., Tang, Q., Deng, Z. X., Chen, G. Y., and Wang, Z. K. (2021). Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region. Earth Planet. Phys., 5(5), 462–482. http://doi.org/10.26464/epp2021025

2021, 5(5): 462-482. doi: 10.26464/epp2021025

SPACE PHYSICS: IONOSPHERIC PHYSICS

Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China

Corresponding author: Chen Zhou, chenzhou@whu.edu.cn

Received Date: 2021-01-31
Web Publishing Date: 2021-05-19

This paper briefly reviews ionospheric irregularities that occur in the E and F regions at mid-latitudes. Sporadic E (ES) is a common ionospheric irregularity phenomenon that is first noticed in the E layer. ES mainly appears during daytime in summer hemispheres, and is formed primarily from neutral wind shear in the mesosphere and lower thermosphere (MLT) region. Field-aligned irregularity (FAI) in the E region is also observed by Very High Frequency (VHF) radar in mid-latitude regions. FAI frequently occurs after sunset in summer hemispheres, and spectrum features of E region FAI echoes suggest that type-2 irregularity is dominant in the nighttime ionosphere. A close relationship between ES and E region FAI implies that ES may be a possible source of E region FAI in the nighttime ionosphere. Strong neutral wind shear, steep ES plasma density gradient, and a polarized electric field are the significant factors affecting the formation of E region FAI. At mid-latitudes, joint observational experiments including ionosonde, VHF radar, Global Positioning System (GPS) stations, and all-sky optical images have revealed strong connections across different scales of ionospheric irregularities in the nighttime F region, such as spread F (SF), medium-scale traveling ionospheric disturbances (MSTID), and F region FAI. Observations suggest that different scales of ionospheric irregularities are generally attributed to the Perkins instability and subsequently excited gradient drift instability. Nighttime MSTID can further evolve into small-scale structures through a nonlinear cascade process when a steep plasma density gradient exists at the bottom of the F region. In addition, the effect of ionospheric electrodynamic coupling processes, including ionospheric E-F coupling and inter-hemispheric coupling on the generation of ionospheric irregularities, becomes more prominent due to the significant dip angle and equipotentiality of magnetic field lines in the mid-latitude ionosphere. Polarized electric fields can map to different ionospheric regions and excite plasma instabilities which form ionospheric irregularities. Nevertheless, the mapping efficiency of a polarized electric field depends on the ionospheric background and spatial scale of the field.

Key words: ionospheric irregularity; plasma instability; neutral wind; polarized electric field; ionospheric electrodynamic coupling

Abdu, M. A., Batista, I. S., and Bittencourt, J. A. (1981). Some characteristics of spread F at the magnetic equatorial station Fortaleza. J. Geophys. Res., 86(A8), 6836–6842. https://doi.org/10.1029/ja086ia08p06836

Abdu, M. A., Sobral, J. H. A., Nelson, O. R., and Batista, I. S. (1985). Solar cycle related range type spread-F occurrence characteristics over equatorial and low latitude stations in Brazil. J. Atmos. Terr. Phys., 47(8-10), 901–905. https://doi.org/10.1016/0021-9169(85)90065-0

Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. Terr. Phys., 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7

Abdu, M. A., Souza, J. R., Batista, I. S., Fejer, B. G., and Sobral, J. H. A. (2013). Sporadic E layer development and disruption at low latitudes by prompt penetration electric fields during magnetic storms. J. Geophys. Res., 118(5), 2639–2647. https://doi.org/10.1002/jgra.50271

Abdu, M. A., De Souza, J. R., Batista, I. S., Santos, A. M., Sobral, J. H. A., Rastogi, R. G., and Chandra, H. (2014). The role of electric fields in sporadic E layer formation over low latitudes under quiet and magnetic storm conditions. J. Atmos. Sol. Terr. Phys., 115-116, 95–105. https://doi.org/10.1016/j.jastp.2013.12.003

Arras, C., Wickert, J., Beyerle, G., Heise, S., Schmidt, T., and Jacobi, C. (2008). A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett., 35(14), L14809. https://doi.org/10.1029/2008GL034158

Basu, S., and Kelley, M. C. (1979). A review of recent observations of equatorial scintillations and their relationship to current theories of F region irregularity generation. Radio Sci., 14(3), 471–485. https://doi.org/10.1029/RS014i003p00471

Basu, S., Basu, S., Ganguly, S., and Klobuchar, J. A. (1981). Generation of kilometer scale irregularities during the midnight collapse at Arecibo. J. Geophys. Res., 86(A9), 7607–7616. https://doi.org/10.1029/JA086iA09p07607

Basu, S., MacKenzie, E., and Basu, S. (1988). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci., 23(3), 363–378. https://doi.org/10.1029/RS023i003p00363

Bernhardt, P. A. (2002). The modulation of sporadic-E layers by Kelvin-Helmholtz billows in the neutral atmosphere. J. Atmos. Sol. Terr. Phys., 64(12-14), 1487–1504. https://doi.org/10.1016/S1364-6826(02)00086-X

Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. J. Geophys. Res., 43(3), 249–256. https://doi.org/10.1029/TE043i003p00249

Bowman G. G. (1960). Some aspects of sporadic-E at mid-latitudes. Planet. Space Sci., 2(4), 195–202. https://doi.org/10.1016/0032-0633(60)90016-7

Bowman, G. G. (1990). A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr., 42(2), 109–138. https://doi.org/10.5636/jgg.42.109

Bowman, G. G. (1991). Ionospheric frequency spread and its relationship with range spread in mid-latitude regions. J. Geophys. Res., 96(A6), 9745–9753. https://doi.org/10.1029/91JA00389

Burke, W. J., Martinis, C. R., Lai, P. C., Gentile, L. C., Sullivan, C., and Pfaff, R. F. (2016). C/NOFS observations of electromagnetic coupling between magnetically conjugate MSTID structures. J. Geophys. Res., 121(3), 2569–2582. https://doi.org/10.1002/2015JA021965

Burnside, R. G., Walker, J. C. G., Behnke, R. A., and Gonzales, C. A. (1983). Polarization electric fields in the nighttime F layer at Arecibo. J. Geophys. Res., 88(A8), 6259–6266. https://doi.org/10.1029/JA088iA08p06259

Candido, C. M. N., Batista, I. S., Becker-Guedes, F., Abdu, M. A., Sobral, J. H. A., and Takahashi, H. (2011). Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity. J. Geophys. Res., 116(A6), A06316. https://doi.org/10.1029/2010JA016374

Chen, G. Y., Zhou, C., Liu, Y., Zhao, J. Q., Tang, Q., Wang, X., and Zhao, Z. Y. (2019). A statistical analysis of medium-scale traveling ionospheric disturbances during 2014-2017 using the Hong Kong CORS network. Earth Planets Space, 71(1), 52. https://doi.org/10.1186/s40623-019-1031-9

Chu, Y. H., Wang, K. H., Wu, K. H., Chen, K. T., Tzeng, K. J., Su, C. L., and Plane, J. M. C. (2014). Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination. J. Geophys. Res., 119(3), 2117–2136. https://doi.org/10.1002/2013JA019437

Cohen, R., and Bowles, K. L. (1967). Secondary irregularities in the equatorial electrojet. J. Geophys. Res., 72(3), 885–894. https://doi.org/10.1029/JZ072i003p00885

Cosgrove, R. B., and Tsunoda, R. T. (2001). Polarization electric fields sustained by closed-current dynamo structures in midlatitude sporadic E. Geophys. Res. Lett., 28(8), 1455–1458. https://doi.org/10.1029/2000GL012178

Cosgrove, R. B., and Tsunoda, R. T. (2002a). Wind-shear-driven, closed-current dynamos in midlatitude sporadic E. Geophys. Res. Lett., 29(2), 1020. https://doi.org/10.1029/2001GL013697

Cosgrove, R. B., and Tsunoda, R. T. (2002b). A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 29(18), 1864. https://doi.org/10.1029/2002GL014669

Cosgrove, R. B., and Tsunoda, R. T. (2003). Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere. J. Geophys. Res., 108(A7), 1283. https://doi.org/10.1029/2002JA009728

Cosgrove, R. B., and Tsunoda R. T. (2004). Instability of the E-F coupled nighttime midlatitude ionosphere. J. Geophys. Res., 109(A4), A04305. https://doi.org/10.1029/2003JA010243

Cosgrove, R. B. (2007). Generation of mesoscale F layer structure and electric fields by the combined Perkins and ES layer instabilities, in simulations. Ann. Geophys., 25(7), 1579–1601. https://doi.org/10.5194/angeo-25-1579-2007

Dabas, R. S., Das, R. M., Sharma, K., Garg, S. C., Devasia, C. V., Subbarao, K. S. V., and Rama Rao, P. V. S. (2007). Equatorial and low latitude spread-F irregularity characteristics over the Indian region and their prediction possibilities. J. Atmos. Sol. Terr. Phys., 69(6), 685–696. https://doi.org/10.1016/j.jastp.2007.01.002

Ding, F., Wan, W. X., Xu, G. R., Yu, T., Yang, G. L., and Wang, J. S. (2011). Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J. Geophys. Res., 116(A9), A09327. https://doi.org/10.1029/2011JA016545

Duly, T. M., Huba, J. D., and Makela, J. J. (2014). Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res., 119(8), 6745–6757. https://doi.org/10.1002/2014JA020146

Dungey J. W. (1956). Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys., 9(5-6), 304–310. https://doi.org/10.1016/0021-9169(56)90148-9

Farley, D. T. Jr. (1959). A theory of electrostatic fields in a horizontally stratified ionosphere subject to a vertical magnetic field. J. Geophys. Res., 64(9), 1225–1233. https://doi.org/10.1029/JZ064i009p01225

Farley, D. T. Jr. (1960). A theory of electrostatic fields in the ionosphere at nonpolar geomagnetic latitudes. J. Geophys. Res., 65(3), 869–877. https://doi.org/10.1029/JZ065i003p00869

Farley, D. T. Jr. (1963). A plasma instability resulting in field-aligned irregularities in the ionosphere. J. Geophys. Res., 68(22), 6083–6097. https://doi.org/10.1029/JZ068i022p06083

Fejer, B. G., and Kelley, M. C. (1980). Ionospheric irregularities. Rev. Geophys., 18(2), 401–454. https://doi.org/10.1029/RG018i002p00401

Fukao, S., McClure, J. P., Ito, A., Sato, T., Kimura, I., Tsuda, T., and Kato, S. (1988). First VHF radar observation of midlatitude F-region field-aligned irregularities. Geophys. Res. Lett., 15(8), 768–771. https://doi.org/10.1029/GL015i008p00768

Fukao, S., Kelley, M. C., Shirakawa, T., Takami, T., Yamamoto, Y., Tsuda, T., and Kato, S. (1991). Turbulent upwelling of the mid-latitude ionosphere: 1. Observational results by the MU radar. J. Geophys. Res., 96(A3), 3725–3746. https://doi.org/10.1029/90JA02253

Garcia, F. J., Kelley, M. C., Makela, J. J., and Huang, C. S. (2000). Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes. J. Geophys. Res., 105(A8), 18407–18415. https://doi.org/10.1029/1999JA000305

Haldoupis, C., and Schlegel, K. (1996). Characteristics of midlatitude coherent backscatter from the ionospheric E region obtained with Sporadic E Scatter experiment. J. Geophys. Res., 101(A6), 13387–13397. https://doi.org/10.1029/96JA00758

Haldoupis, C., Schlegel, K., and Farley, D. T. (1996). An explanation for type 1 radar echoes from the midlatitude E-region ionosphere. Geophys. Res. Lett., 23(1), 97–100. https://doi.org/10.1029/95GL03585

Haldoupis, C., Kelley, M. C., Hussey, G. C., and Shalimov, S. (2003). Role of unstable sporadic-E layers in the generation of midlatitude spread F. J. Geophys. Res., 108(A12), 1446. https://doi.org/10.1029/2003JA009956

Haldoupis, C., Pancheva, D., and Mitchell, N. J. (2004). A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res., 109(A2), A02302. https://doi.org/10.1029/2003JA010253

Haldoupis, C., Meek, C., Christakis, N., Pancheva, D., and Bourdillon, A. (2006). Ionogram height-time-intensity observations of descending sporadic E layers at mid-latitude. J. Atmos. Sol. Terr. Phys., 68(3-5), 539–557. https://doi.org/10.1016/j.jastp.2005.03.020

Haldoupis, C., Pancheva, D., Singer, W., Meek, C., and MacDougall, J. (2007). An explanation for the seasonal dependence of midlatitude sporadic E layers. J. Geophys. Res., 112(A6), A06315. https://doi.org/10.1029/2007JA012322

Haldoupis, C. (2012). Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci. Rev., 168(1-4), 441–461. https://doi.org/10.1007/s11214-011-9786-8

Hamza, A. M. (1999). Perkins instability revisited. J. Geophys. Res., 104(A10), 22567–22575. https://doi.org/10.1029/1999JA900307

Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38(11), 1441–1481. https://doi.org/10.1139/p60-150

Hooke, W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys., 38(5), 795–823. https://doi.org/10.1016/S0021-9169(68)80033-9

Huang, F. Q., Dou, X. K., Lei, J. H., Lin, J., Ding, F., and Zhong, J. H. (2016). Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res., 121(9), 8887–8899. https://doi.org/10.1002/2016JA022760

Hysell, D., Larsen, M., Fritts, D., Laughman, B., and Sulzer, M. (2018). Major upwelling and overturning in the mid-latitude F region ionosphere. Nat. Commun., 9(1), 3326. https://doi.org/10.1038/s41467-018-05809-x

Jiang, C. H., Yang, G. B., Liu, J., and Zhao, Z. Y. (2019). A study of the F2 layer stratification on ionograms using a simple model of TIDs. J. Geophys. Res., 124(2), 1317–1327. https://doi.org/10.1029/2018JA026040

Kagan, L. M., and Kelley, M. C. (1998). A wind-driven gradient drift mechanism for mid-latitude E-region ionospheric irregularities. Geophys. Res. Lett., 25(22), 4141–4144. https://doi.org/10.1029/1998GL900123

Kelley, M. C., Larsen, M. F., LaHoz, C., and McClure, J. P. (1981). Gravity wave initiation of equatorial spread F: A case study. J. Geophys. Res., 86(A11), 9087–9100. https://doi.org/10.1029/JA086iA11p09087

Kelley, M. C., and Fukao, S. (1991). Turbulent upwelling of the mid-latitude ionosphere: 2. Theoretical framework. J. Geophys. Res., 96(A3), 3747–3753. https://doi.org/10.1029/90JA02252

Kelley, M. C., Haldoupis, C., Nicolls, M. J., Makela, J. J., Belehaki, A., Shalimov, S., and Wong, V. K. (2003). Case studies of coupling between the E and F regions during unstable sporadic-E conditions. J. Geophys. Res., 108(A12), 1447. https://doi.org/10.1029/2003JA009955

Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics. San Diego, CA, USA: Academic.222

Kotake, N., Otsuka, Y., Tsugawa, T., Ogawa, T., and Saito, A. (2006). Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances. J. Geophys. Res., 111(A4), A04306. https://doi.org/10.1029/2005JA011418

Kotake, N., Otsuka, Y., Ogawa, T., Tsugawa, T., and Saito, A. (2007). Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space, 59(2), 95–102. https://doi.org/10.1186/BF03352681

Larsen, M. F., Fukao, S., Yamamoto, M., Tsunoda, R., Igarashi, K., and Ono, T. (1998). The SEEK chemical release experiment: Observed neutral wind profile in a region of sporadic E. Geophys. Res. Lett., 25(11), 1789–1792. https://doi.org/10.1029/98GL00986

Larsen, M. F. (2000). A shear instability seeding mechanism for quasiperiodic radar echoes. J. Geophys. Res., 105(A11), 24931–24940. https://doi.org/10.1029/1999JA000290

Larsen, M. F., Yamamoto, M., Fukao, S., Tsunoda, R. T., and Saito, A. (2005). Observations of neutral winds, wind shears, and wave structure during a sporadic-E/QP event. Ann. Geophys., 23(7), 2369–2375. https://doi.org/10.5194/angeo-23-2369-2005

Li, G., Ning, B., Hu, L., Liu, L., Yue, X., Wan, W., Zhao, B., Igarashi, K., Kubota, M., … Liu, J. (2010). Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res., 115(A4), A04304. https://doi.org/10.1029/2009ja014830

Li, G. Z., Ning, B. Q., Hu, L. H., and Li, M. (2013). Observations on the field-aligned irregularities using Sanya VHF radar: 2. Low latitude Ionospheric E-region quasi-periodic echoes in the East Asian sector. Chin. J. Geophys. (in Chinese) , 56(7), 2141–2151. https://doi.org/10.6038/cjg20130701

Li, G. Z., Ning, B. Q., and Hu, L. H. (2014). Interferometry observations of low-latitude E-region irregularity patches using the Sanya VHF radar. Sci. China Technol. Sci., 57(8), 1552–1561. https://doi.org/10.1007/s11431-014-5592-3

Lindzen, R. S., and Hong, S. S. (1974). Effects of mean winds and horizontal temperature gradients on solar and lunar semidiurnal tides in the atmosphere. J. Atmos. Sci., 31(5), 1421–1466. https://doi.org/10.1175/1520-0469(1974)031<1421:EOMWAH>2.0.CO;2

Liu, Y., Zhou, C., Tang, Q., Li, Z. Q., Song, Y., Qing, H. Y., Ni, B. B., and Zhao, Z. Y. (2018). The seasonal distribution of sporadic E layers observed from radio occultation measurements and its relation with wind shear measured by TIMED/TIDI. Adv. Space Res., 62(2), 426–439. https://doi.org/10.1016/j.asr.2018.04.026

Liu, Y., Zhou, C., Tang, Q., Kong, J., Gu, X. D., Ni, B. B., Yao, Y. B., and Zhao, Z. Y. (2019). Evidence of mid- and low-latitude nighttime ionospheric E-F coupling: coordinated observations of sporadic E layers, F-region field-aligned irregularities, and medium-scale traveling ionospheric disturbances. IEEE Trans. Geosci. Remote Sens., 57(10), 7547–7557. https://doi.org/10.1109/TGRS.2019.2914059

Liu, Y., Zhou, C., Xu, T., Wang, Z. K., Tang, Q., Deng, Z. X., and Chen, G. Y. (2020). Investigation of midlatitude nighttime ionospheric E-F coupling and interhemispheric coupling by using COSMIC GPS radio occultation measurements. J. Geophys. Res., 125(3), e2019JA027625. https://doi.org/10.1029/2019JA027625

MacDougall, J. W. (1974). 110 km neutral zonal wind patterns. Planet. Space Sci., 22(4), 545–558. https://doi.org/10.1016/0032-0633(74)90089-0

Makela, J. J., and Otsuka, Y. (2011). Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1-4), 419–440. https://doi.org/10.1007/s11214-011-9816-6

Maksyutin, S. V., and Sherstyukov, O. N. (2005). Dependence of E-sporadic layer response on solar and geomagnetic activity variations from its ion composition. Adv. Space Res., 35(8), 1496–1499. https://doi.org/10.1016/j.asr.2005.05.062

Martinis, C., Baumgardner, J., Wroten, J., and Mendillo, M. (2010). Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo. Geophys. Res. Lett., 37(11), L11103. https://doi.org/10.1029/2010GL043569

Martinis, C., Baumgardner, J., Mendillo, M., Wroten, J., MacDonald, T., Kosch, M., Lazzarin, M., and Umbriaco, G. (2019). First conjugate observations of Medium-Scale Traveling Ionospheric Disturbances (MSTIDs) in the Europe-Africa longitude sector. J. Geophys. Res., 124(3), 2213–2222. https://doi.org/10.1029/2018JA026018

Maruyama, T., Fukao, S., and Yamamoto, M. (2000). A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E. Radio Sci., 35(5), 1155–1164. https://doi.org/10.1029/1999RS002296

Maruyama, T., Saito, S., Yamamoto, M., and Fukao, S. (2006). Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar. Ann. Geophys., 24(1), 153–162. https://doi.org/10.5194/angeo-24-153-2006

Mathews, J. D. (1998). Sporadic E: Current views and recent progress. J. Atmos. Sol. Terr. Phys., 60(4), 413–435. https://doi.org/10.1016/S1364-6826(97)00043-6

Mathews, J. D., González, S., Sulzer, M. P., Zhou, Q. H., Urbina, J., Kudeki, E., and Franke, S. (2001). Kilometer-scale layered structures inside spread-F. Geophys. Res. Lett., 28(22), 4167–4170. https://doi.org/10.1029/2001GL013077

Ogawa, T., Takahashi, O., Otsuka, Y., Nozaki, K., Yamamoto, M., and Kita, K. (2002). Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer. J. Geophys. Res., 107(A10), 1275. https://doi.org/10.1029/2001JA900176

Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2004). Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys. Res. Lett., 31(15), L15803. https://doi.org/10.1029/2004GL020262

Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., and Fukao, S. (2007). Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and E region field-aligned irregularities at midlatitude. J. Geophys. Res., 112(A06317). https://doi.org/10.1029/2005JA011548

Otsuka, Y., Shiokawa, K., Ogawa, T., Yokoyama, T., and Yamamoto, M. (2009). Spatial relationship of nighttime medium-scale traveling ionospheric disturbances and F region field-aligned irregularities observed with two spaced all-sky airglow imagers and the middle and upper atmosphere radar. J. Geophys. Res., 114(A5), A05302. https://doi.org/10.1029/2008JA013902

Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., and Tsugawa, T. (2013). GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys., 31(2), 163–172. https://doi.org/10.5194/angeo-31-163-2013

Pancheva, D., Haldoupis, C., Meek, C. E., Manson, A. H., and Mitchell, N. J. (2003). Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J. Geophys. Res., 108(A5), 1176. https://doi.org/10.1029/2002JA009788

Patra, A. K., Venkateswara Rao, N., and Choudhary, R. K. (2009). Daytime low-altitude quasi-periodic echoes at Gadanki: Understanding of their generation mechanism in the light of their Doppler characteristics. Geophys. Res. Lett., 36(5), L05107. https://doi.org/10.1029/2008GL036670

Paul, K. S., Haralambous, H., Oikonomou, C., and Paul, A. (2019). Long-term aspects of nighttime spread F over a low mid-latitude European station. Adv. Space Res., 64(6), 1199–1216. https://doi.org/10.1016/j.asr.2019.06.020

Pedatella, N. M., Liu, H. L., Richmond, A. D., Maute, A., and Fang, T. W. (2012). Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere. J. Geophys. Res., 117(A8), A08326. https://doi.org/10.1029/2012JA017858

Pietrella, M., and Bianchi, C. (2009). Occurrence of sporadic-E layer over the ionospheric station of Rome: Analysis of data for thirty-two years. Adv. Space Res., 44(1), 72–81. https://doi.org/10.1016/j.asr.2009.03.006

Perkins F. (1973). Spread F and ionospheric currents. J. Geophys. Res., 78(1), 218–226. https://doi.org/10.1029/JA078i001p00218

Ratcliffe, J. A. (1972). An Introduction to the Ionosphere and Magnetosphere. Cambridge: Cambridge University Press.222

Saito, A., Nishimura, M., Yamamoto, M., Fukao, S., Tsugawa, T., Otsuka, Y., Miyazaki, S., and Kelley, M. C. (2002). Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime F-region ionosphere with the MU radar and a GPS network. Earth Planets Space, 54, 31–44. https://doi.org/10.1186/BF03352419

Schlegel, K., and Haldoupis, C. (1994). Observation of the modified two-stream plasma instability in the midlatitude E region ionosphere. J. Geophys. Res., 99(A4), 6219–6226. https://doi.org/10.1029/93JA02869

Shi, J. K., Wang, G. J., Reinisch, B. W., Shang, S. P., Wang, X., Zherebotsov, G., and Potekhin, A. (2011). Relationship between strong range spread F and ionospheric scintillations observed in Hainan from 2003 to 2007. J. Geophys. Res., 116(A8), A08306. https://doi.org/10.1029/2011JA016806

Shiokawa, K., Ihara, C., Otsuka, Y., and Ogawa, T. (2003). Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res., 108(A1), 1052. https://doi.org/10.1029/2002JA009491

Simon, A. (1963). Instability of a partially ionized plasma in crossed electric and magnetic fields. Phys. Fluids, 6(3), 382–388. https://doi.org/10.1063/1.1706743

Smith E. K. (1957). Worldwide occurrence of sporadic E. NBS Circular 582, Washington. D.C: U.S. Gort. Printing Office.222

Sripathi, S., Patra, A. K., Sivakumar, V., and Rao, P. B. (2003). Shear instability as a source of the daytime quasi-periodic radar echoes observed by the Gadanki VHF radar. Geophys. Res. Lett., 30(22), 2149. https://doi.org/10.1029/2003GL017544

Stening, R. J., Forbes, J. M., Hagan, M. E., and Richmond, A. D. (1997). Experiments with a lunar atmospheric tidal model. J. Geophys. Res., 102(D12), 13465–13471. https://doi.org/10.1029/97JD00778

Sun, L., Xu, J., Wang, W., Yue, X., Yuan, W., Ning, B., Zhang, D., and de Meneses, F. C. (2015). Mesoscale field-aligned irregularity structures (FAIs) of airglow associated with medium-scale traveling ionospheric disturbances (MSTIDs). J. Geophys. Res., 120(11), 9839–9858. https://doi.org/10.1002/2014JA020944

Swartz, W. E., Kelley, M. C., Makela, J. J., Collins, S. C., Kudeki, E., Franke, S., Urbina, J., Aponte, N., Sulzer, M. P., and González, S. A. (2000). Coherent and incoherent scatter radar observations during intense mid-latitude spread F. Geophys. Res. Lett., 27(18), 2829–2832. https://doi.org/10.1029/2000GL000021

Tang, Q., Zhou, C., Liu, Y., and Chen, G. Y. (2020). Response of sporadic E layer to sudden stratospheric warming events observed at low and middle latitudes. J. Geophys. Res., 125(2), e2019JA027283. https://doi.org/10.1029/2019JA027283

Tsunoda, R. T., Fukao, S., and Yamamoto, M. (1994). On the origin of quasi-periodic radar backscatter from midlatitude sporadic E. Radio Sci., 29(1), 349–365. https://doi.org/10.1029/93RS01511

Tsunoda, R. T., and Cosgrove, R. B. (2001). Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 28(22), 4171–4174. https://doi.org/10.1029/2001GL013245

Tsunoda, R. T., Cosgrove, R. B., and Ogawa, T. (2004). Azimuth-dependent E s layer instability: A missing link found. J. Geophys. Res., 109(A12), A12303. https://doi.org/10.1029/2004JA010597

Vadas, S. L. (2007). Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res., 112(A6), A06305. https://doi.org/10.1029/2006JA011845

Valladares, C. E., and Sheehan, R. (2016). Observations of conjugate MSTIDs using networks of GPS receivers in the American sector. Radio Sci., 51(9), 1470–1488. https://doi.org/10.1002/2016RS005967

Venkateswara Rao, N., Patra, A. K., and Rao, S. V. B. (2008). Some new aspects of low-latitude E-region QP echoes revealed by Gadanki radar: Are they due to Kelvin-Helmholtz instability or gravity waves?. J. Geophys. Res., 113(A3), A03309. https://doi.org/10.1029/2007JA012574

Wang, G. J., Shi, J. K., Wang, X., Shang, S. P., Zherebtsov, G., and Pirog, O. M. (2010). The statistical properties of spread F observed at Hainan station during the declining period of the 23rd solar cycle. Ann. Geophys., 28(6), 1263–1271. https://doi.org/10.5194/angeo-28-1263-2010

Wang, N., Guo, L. X., Zhao, Z. W., Ding, Z. H., and Lin, L. K. (2018). Spread-F occurrences and relationships with foF2 and h′F at low- and mid-latitudes in China. Earth Planets Space, 70(1), 59. https://doi.org/10.1186/s40623-018-0821-9

Whitehead, J. D. (1960). The formation of the Sporadic-E layer in the temperate zones. J. Atmos. Terr. Phys., 20(1), 49–58. https://doi.org/10.1016/0021-9169(61)90097-6

Wilkinson, P. J., Szuszczewicz, E. P., and Roble, R. G. (1992). Measurements and modelling of intermediate, descending, and sporadic layers in the lower ionosphere: results and implications for global-scale ionospheric-thermospheric studies. Geophys. Res. Lett., 19(2), 95–98. https://doi.org/10.1029/91GL02774

Woodman, R. F., Yamamoto, M., and Fukao, S. (1991). Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities. Geophys. Res. Lett., 18(7), 1197–1200. https://doi.org/10.1029/91GL01159

Xiao, S. G., Shi, J. K., Zhang, D. H., Hao, Y. Q., and Huang, W. Q. (2012). Observational study of daytime ionospheric irregularities associated with typhoon. Sci. China Tech. Sci., 55(5), 1302–1304. https://doi.org/10.1007/s11431-012-4816-7

Yamamoto, M., Fukao, S., Woodman, R. F., Ogawa, T., Tsuda, T., and Kato, S. (1991). Mid-latitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res., 96(A9), 15943–15949. https://doi.org/10.1029/91JA01321

Yamamoto, M., Fukao, S., Ogawa, T., Tsuda, T., and Kato, S. (1992). A morphological study on mid-latitude E-region field-aligned irregularities observed with the MU radar. J. Atmos. Terr. Phys., 54(6), 769–777. https://doi.org/10.1016/0021-9169(92)90115-2

Yamamoto, M., Komoda, N., Fukao, S., Tsunoda, R. T., Ogawa, T., and Tsuda, T. (1994). Spatial structure of the E region field-aligned irregularities revealed by the MU radar. Radio Sci., 29(1), 337–347. https://doi.org/10.1029/93RS01846

Yokoyama T., Yamamoto M., and Fukao S. (2003). Computer simulation of polarization electric fields as a source of mid-latitude field-aligned irregularities. J. Geophys. Res., 108(A2), 1054. https://doi.org/10.1029/2002JA009513

Yokoyama, T., Yamamoto, M., Fukao, S., and Cosgrove, R. B. (2004a). Three-dimensional simulation on generation of polarization electric field in the midlatitude E-region ionosphere. J. Geophys. Res., 109(A1), A01309. https://doi.org/10.1029/2003JA010238

Yokoyama, T., Horinouchi, T., Yamamoto, M., and Fukao, S. (2004b). Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field. J. Geophys. Res., 109(A12), A12307. https://doi.org/10.1029/2004JA010508

Yokoyama, T., Otsuka, Y., Ogawa, T., Yamamoto, M., and Hysell, D. L. (2008). First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 35(3), L03101. https://doi.org/10.1029/2007GL032496

Yokoyama, T., Hysell, D. L., Otsuka, Y., and Yamamoto, M. (2009). Three-dimensional simulation of the coupled Perkins and E s-layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res., 114(A3), A03308. https://doi.org/10.1029/2008JA013789

Yokoyama, T. (2014). Hemisphere-coupled modeling of nighttime medium-scale traveling ionospheric disturbances. Adv. Space Res., 54(3), 481–488. https://doi.org/10.1016/j.asr.2013.07.048

Zhang, Y. B., Wu, J., Guo, L. X., Hu, Y. L., Zhao, H. S., and Xu, T. (2015). Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations. Adv. Space Res., 55(5), 1366–1371. https://doi.org/10.1016/j.asr.2014.12.010

Zhou, C., Tang, Q., Song, X. X., Qing, H. Y., Liu, Y., Wang, X., Gu, X. D., Ni, B. B., and Zhao, Z. Y. (2017). A statistical analysis of sporadic E layer occurrence in the midlatitude China region. J. Geophys. Res., 122(3), 3617–3631. https://doi.org/10.1002/2016JA023135

Zhou, C., Liu, Y., Tang, Q., Gu, X. D., Ni, B. B., and Zhao, Z. Y. (2018a). Investigation on the occurrence of mid-latitude E-region irregularity by Wuhan VHF radar and its relationship with sporadic E layer. IEEE Trans. Geosci. Remote Sens., 56(12), 7207–7216. https://doi.org/10.1109/TGRS.2018.2849359

Zhou, C., Tang, Q., Huang, F. Q., Liu, Y., Gu, X. D., Lei, J. H., Ni, B. B., and Zhao, Z. Y. (2018b). The simultaneous observations of nighttime ionospheric E region irregularities and F region medium-scale traveling ionospheric disturbances in midlatitude China. J. Geophys. Res., 123(6), 5195–5209. https://doi.org/10.1029/2018JA025352

[1]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[2]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[3]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[4]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[5]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[6]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[7]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[8]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[9]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[10]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[11]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[12]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[13]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[14]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[15]

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

[16]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[17]

Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032

[18]

ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041

[19]

Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042

[20]

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang