Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Xiong, Y., Xie, L., Fu, S. Y., Ni, B. B. and Pu, Z. Y. (2021). Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density. Earth Planet. Phys., 5(5), 1–11. http://doi.org/10.26464/epp2021051

doi: 10.26464/epp2021051

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density

1. 

School of Earth and Space Science, Peking University, Beijing 100871, China

2. 

Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China

3. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

Corresponding author: Lun Xie, xielun@pku.edu.cnSuiYan Fu, suiyanfu@pku.edu.cn

Received Date: 2021-01-22
Web Publishing Date: 2021-08-11

We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements (SWDEs) on November 27−30, 2015. Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions (PAD) first developed at L* = 5.5 and then moved down to L* < 4. According to the evolution of the electron phase space density (PSD) profile, losses of electrons with small pitch angles at L* > 4 during SWDE1 are mainly due to outward radial diffusion. However during SWDE2&3, scattering loss due to EMIC waves is dominant at 4 < L* < 5. As for electrons with large pitch angles, outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell (LCDS). The inner edge of EMIC wave activity moved from L* ~5 to L* ~4 and from L ~6.4 to L ~4.2 from SWDE1 to SWDE2&3, respectively, observed by Van Allen Probes and by ground stations. This is consistent with the inward penetration of anisotropic energetic protons from L* = 4.5 to L* = 3.5, suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.

Key words: solar wind density enhancement; outer radiation belt; MeV electrons; outward radial diffusion; EMIC wave scattering loss

Anderson, B. J., and Hamilton, D. C. (1993). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. J. Geophys. Res.: Space Phys., 98(A7), 11369–11382. https://doi.org/10.1029/93JA00605

Aseev, N. A., Shprits, Y. Y., Drozdov, A. Y., Kellerman, A. C., Usanova, M. E., Wang, D., and Zhelavskaya, I. S. (2017). Signatures of ultrarelativistic electron loss in the heart of the outer radiation belt measured by van Allen Probes. J. Geophys. Res.: Space Phys., 122(10), 10102–10111. https://doi.org/10.1002/2017JA024485

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X., Elkington, S. R., Monk, S., Reukauf, R., … Cervelli, B. (2013). The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: Characterization of Earth’s radiation belt high-energy particle populations. Space Sci. Rev., 179(1-4), 337–381. https://doi.org/10.1007/s11214-012-9950-9

Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. (2011). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38(18), L18105. https://doi.org/10.1029/2011gl048980

Blake, J. B., Baker, D. N., Turner, N., Ogilvie, K. W., and Lepping, R. P. (1997). Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind and magnetic field measurements. Geophys. Res. Lett., 24(8), 927–929. https://doi.org/10.1029/97GL00859

Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain Jr, W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., .. Zakrzewski, M. P. (2013). The Magnetic Electron Ion Spectrometer (MAGEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8

Borovsky, J. E., Thomsen, M. F., and Elphic, R. C. (1998). The driving of the plasma sheet by the solar wind. J. Geophys. Res.: Space Phys., 103(A8), 17617–17639. https://doi.org/10.1029/97JA02986

Borovsky, J. E., and Denton, M. H. (2009). Relativistic-electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind. J. Geophys. Res.: Space Phys., 114(A2), A02201. https://doi.org/10.1029/2008JA013128

Borovsky, J. E., and Denton, M. H. (2014). Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere. J. Geophys. Res.: Space Phys., 119(6), 4307–4334. https://doi.org/10.1002/2014JA019876

Borovsky, J. E., and Shprits, Y. Y. (2017). Is the Dst index sufficient to define all geospace storms?. J. Geophys. Res.: Space Phys., 122(11), 11543–11547. https://doi.org/10.1002/2017JA024679

Boynton, R. J., Balikhin M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., Amariutei, O. A., Borovsky, J. E., Walker, S. N. (2013). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research:Space Physics, 118(4), 1500–1513. https://doi.org/10.1002/jgra.50192

Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Shumko, M., Turner, D. L., Santolik, O., … Kletzing, C. A. (2017). Observations directly linking relativistic electron microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44(22), 11265–11272. https://doi.org/10.1002/2017GL075001

Carson, B. R., Rodger, C. J., and Clilverd, M. A. (2013). POES satellite observations of EMIC-wave driven relativistic electron precipitation during 1998-2010. J. Geophys. Res.: Space Phys., 118(1), 232–243. https://doi.org/10.1029/2012JA017998

Chen, L. J., Thorne, R. M., Jordanova, V. K., Wang, C. P., Gkioulidou, M., Lyons, L., and Horne, R. B. (2010). Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling. J. Geophys. Res.: Space Phys., 115(A7), A07209. https://doi.org/10.1029/2009JA015075

Engebretson, M. J., Peterson, W. K., Posch, J. L., Klatt, M. R., Anderson, B. J., Russell, C. T., Singer, H. J., Arnoldy, R. L., and Fukunishi, H. (2002). Observations of two types of Pc 1-2 pulsations in the outer dayside magnetosphere. J. Geophys. Res.: Space Phys., 107(A12), 1451. https://doi.org/10.1029/2001JA000198

Engebretson, M. J., Posch, J. L., Braun, D. J., Li, W., Ma, Q., Kellerman, A. C., Huang, C. L., Kanekal, S. G., Kletzing, C. A., … Baker, D. N. (2018). EMIC wave events during the four GEM QARBM challenge intervals. J. Geophys. Res.: Space Phys., 123(8), 6394–6423. https://doi.org/10.1029/2018JA025505

Evans, D. S., and M. S. Greer (2004), Polar orbiting Environmental Satellite Space Experiment Monitor-2: Instrument descriptions and archive data documentation, NOAA Technical Memorandum version 1.3. NOAA Space Environment Center, Boulder, Colo.222

Ferradas, C. P., Zhang, J. C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., Skoug, R., and Funsten, H. (2016). Ion nose spectral structures observed by the Van Allen Probes. J. Geophys. Res. Space Phys., 121(12), 12025–12046. https://doi.org/10.1002/2016JA022942

Fok, M. C., Khazanov, G. V., Krivorutsky, E. N., and Glocer, A. (2016). Convective growth of electromagnetic ion cyclotron waves from realistic ring current ion distributions. J. Geophys. Res.: Space Phys., 121(11), 10966–10977. https://doi.org/10.1002/2016JA022964

Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., .. Chen J. (2013). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes mission. Space Sci. Rev., 179, 423–484. https://doi.org/10.1007/s11214-013-9968-7

Green, J. (2013). MEPED telescope data processing theoretical basis document version 1.0, NOAA Technical Memorandum, version 1.0. Available at http://www.ngdc.noaa.gov/stp/satellite/poes/documentation.html.222

Hudson, M. K., Baker, D. N., Goldstein, J., Kress, B. T., Paral, J., Toffoletto, F. R., and Wiltberger, M. (2014). Simulated magnetopause losses and Van Allen Probe flux dropouts. Geophys. Res. Lett., 41(4), 1113–1118. https://doi.org/10.1002/2014GL059222

Jordanova, V. K., Albert, J., & Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC waves from self-consistent global simulations. Journal of Geophysical Research, 113(A3), A00A10. https://doi.org/10.1029/2008JA013239

Katsavrias, C., Daglis, I. A., Turner, D. L., Sandberg, I., Papadimitriou, C., Georgiou, M., and Balasis, G. (2015). Nonstorm loss of relativistic electrons in the outer radiation belt. Geophys. Res. Lett., 42(24), 10521–10530. https://doi.org/10.1002/2015GL066773

Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., and Grew, R. S. (2014). Electron losses from the radiation belts caused by EMIC waves. J. Geophys. Res.: Space Phys., 119(11), 8820–8837. https://doi.org/10.1002/2014JA020366

Kim, H. J., and Chan, A. A. (1997). Fully adiabatic changes in storm time relativistic electron fluxes. J. Geophys. Res.: Space Phys., 102(A10), 22107–22116. https://doi.org/10.1029/97JA01814

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., .. Tyler, J. (2013). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

Li, W., Shprits, Y. Y., and Thorne, R. M. (2007). Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J. Geophys. Res.: Space Phys., 112(A10), A10220. https://doi.org/10.1029/2007JA012368

Li, X. L., Temerin, M., Baker, D. N., Reeves, G. D., and Larson, D. (2001). Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett., 28(9), 1887–1890. https://doi.org/10.1029/2000GL012681

Liu, N. G., Su, Z. P., Gao, Z. L., Zheng, H. N., Wang, Y. M., and Wang, S. (2020). Can solar wind decompressive discontinuities suppress magnetospheric electromagnetic ion cyclotron waves associated with fresh proton injections?. Geophys. Res. Lett., 47(17), e2020GL090296. https://doi.org/10.1029/2020GL090296

Lorentzen, K. R., Blake, J. B., Inan, U. S., and Bortnik, J. (2001). Observations of relativistic electron microbursts in association with VLF chorus. Journal of Geophysical Research, 106(A4), 6017–6027. https://doi.org/10.1029/2000JA003018

Loto'aniu, T. M., Mann, I. R., Ozeke, L. G., Chan, A. A., Dent, Z. C., and Milling, D. K. (2006). Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res.: Space Phys., 111(A4), A04218. https://doi.org/10.1029/2005JA011355

Lyatsky, W., and Khazanov, G. V. (2007). Prediction of geomagnetic activity and key parameters in high-latitude ionosphere–basic elements. NASA/TP-2007-215079, Washington, DC: NASA, 29.222

Lyatsky, W., and Khazanov, G. V. (2008). Effect of solar wind density on relativistic electrons at geosynchronous orbit. Geophys. Res. Lett., 35(3), L03109. https://doi.org/10.1029/2007GL032524

Ma, X., Xiang, Z., Ni, B. B., Fu, S., Cao, X., Hua, M., Guo, D. Y., Guo, Y. J., Gu, X. D., Liu, Z. Y. and Zhu, Q. (2020). On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm. Earth Planet. Phys., 4(6), 598–610. https://doi.org/10.26464/epp2020060

Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., and Anderson, R. R. (2004). Substorm dependence of plasmaspheric hiss. J. Geophys. Res.: Space Phys., 109(A9), A06209. https://doi.org/10.1029/2004JA010387

Millan, R. M., and Thorne, R. M. (2007). Review of radiation belt relativistic electron losses. J. Atmos. Sol. Terr. Phys., 69(3), 362–377. https://doi.org/10.1016/j.jastp.2006.06.019

Morley, S. K., Friedel, R. H. W., Cayton, T. E., and Noveroske, E. (2010). A rapid, global and prolonged electron radiation belt dropout observed with the Global Positioning System constellation. Geophys. Res. Lett., 37(6), L06102. https://doi.org/10.1029/2010GL042772

Mozer, F. S., Agapitov, O. V., Hull, A., Lejosne, S., and Vasko, I. Y. (2017). Pulsating auroras produced by interactions of electrons and time domain structures. J. Geophys. Res.: Space Phys., 122(8), 8604–8616. https://doi.org/10.1002/2017JA024223

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 3–27. https://doi.org/10.1007/s11214-012-9908-y

Ni, B. B., Shprits, Y. Y., Friedel, R., H. W., Thorne, R. M., Daae, M., and Chen, Y. (2013). Responses of Earth's radiation belts to solar wind dynamic pressure variations in 2002 analyzed using multisatellite data and Kalman filtering. J. Geophys. Res.: Space Phys., 118(7), 4400–4414. https://doi.org/10.1002/jgra.50437

Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., Blake, J. B., Christensen, R. A., and Thomsen, D. (2011). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. J. Geophys. Res.: Space Phys., 116(A2), A02213. https://doi.org/10.1029/2010JA015735

Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., and Kanekal, S. G. (2006). Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res.: Space Phys., 111(A11), A11214. https://doi.org/10.1029/2006JA011657

Shprits, Y. Y., Kellerman, A., Aseev, N., Drozdov, A. Y., and Michaelis, I. (2017). Multi-MeV electron loss in the heart of the radiation belts. Geophys. Res. Lett., 44(3), 1204–1209. https://doi.org/10.1002/2016GL072258

Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2011). CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys. Res. Lett., 38(6), L06106. https://doi.org/10.1029/2011GL046873

Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M., Wang, S., … Hospodarsky, G. B. (2014). Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophys. Res. Lett., 41(2), 229–235. https://doi.org/10.1002/2013GL058912

Su, Z. P., Zhu, H., Xiao, F. L., Zong, Q. G., Zhou, X. Z., Zheng, H. N., Wang, Y. M., Wang, S., Hao, Y. X., … Wygant, J. R. (2015). Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. Nat. Commun., 6, 10096. https://doi.org/10.1038/ncomms10096

Su, Z. P., Gao, Z. L., Zhu, H., Li, W., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., … Wygant, J. R. (2016). Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J. Geophys. Res.: Space Phys., 121(7), 6400–6416. https://doi.org/10.1002/2016JA022546

Summers, D., and Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res.: Space Phys., 108(A4), 1143. https://doi.org/10.1029/2002JA009489

Teng, S. C., Li, W., Tao, X., Ma, Q. L., Wu, Y., Capannolo, L., Shen, X. C., and Gan, L. Z. (2019). Generation and characteristics of unusual high frequency EMIC waves. Geophys. Res. Lett., 46(24), 14230–14238. https://doi.org/10.1029/2019GL085220

Tu, W. C., Li, W., Albert, J. M., and Morley, S. K. (2019). Quantitative assessment of radiation belt modeling. J. Geophys. Res.: Space Phys., 124(2), 898–904. https://doi.org/10.1029/2018JA026414

Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos, V. (2012). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys., 8(3), 208–212. https://doi.org/10.1038/nphys2185

Turner, D. L., Kilpua, E. K. J., Hietala, H., Claudepierre, S. G., O'Brien, T. P., Fennell, J. F., Blake, J. B., Jaynes, A. N., Kanekal, S., … Reeves, G. D. (2019). The response of Earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers. J. Geophys. Res.: Space Phys., 124(2), 1013–1034. https://doi.org/10.1029/2018JA026066

Usanova, M. E., Mann, I. R., Rae, I. J., Kale, Z. C., Angelopoulos, V., Bonnell, J. W., Glassmeier, K. H., Auster, H. U., and Singer, H. J. (2008). Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA. Geophys. Res. Lett., 35(17), L17S25. https://doi.org/10.1029/2008GL034458

Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024

Vampola, A. L. (1998). Outer zone energetic electron environment update, in Proceedings of the Conference on the High Energy Radiation Background in Space, pp. 128–136, Inst. of Electr. and Electr. Eng., New York.222

Wang, D. D., Shprits, Y. Y., Zhelavskaya, I. S., Effenberger, F., Castillo, A. M., Drozdov, A. Y., Aseev, N. A., and Cervantes, S. (2020). The effect of plasma boundaries on the dynamic evolution of relativistic radiation belt electrons. J. Geophys. Res.: Space Phys., 125(5), e2019JA027422. https://doi.org/10.1029/2019JA027422

Xiang, Z., Tu, W. C., Li, X. L., Ni, B. B., Morley, S. K., and Baker, D. N. (2017). Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes. J. Geophys. Res.: Space Phys., 122(10), 9858–9879. https://doi.org/10.1002/2017JA024487

Xiang, Z., Tu, W. C., Ni, B. B., Henderson, M. G., and Cao, X. (2018). A statistical survey of radiation belt dropouts observed by Van Allen Probes. Geophys. Res. Lett., 45(16), 8035–8043. https://doi.org/10.1029/2018GL078907

Xiong, Y., Xie, L., Pu, Z. Y., Fu, S. Y., Chen, L. J., Ni, B. B., Li, W., Li, J. X., Guo, R. L., and Parks, G. K. (2015). Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms. J. Geophys. Res.: Space Phys., 120(11), 9513–9523. https://doi.org/10.1002/2015JA021440

Zhang, J. C., Saikin, A. A., Kistler, L. M., Smith, C. W., Spence, H. E., Mouikis, C. G., Torbert, R. B., Larsen, B. A., Reeves, G. D., … Jordanova, V. K. (2014). Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013. Geophys. Res. Lett., 41(12), 4101–4108. https://doi.org/10.1002/2014GL060621

[1]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[2]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[3]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[4]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[5]

ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008

[6]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[7]

ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037

[8]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[9]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[10]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[11]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029

[12]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[13]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[14]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[15]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[16]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[17]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[18]

ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069

[19]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[20]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu