Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ma, X., Xiang, Z., Ni, B. B., Fu, S., Cao, X., Hua, M., Guo, D. Y., Guo, Y. J., Gu, X. D., Liu, Z. Y. and Zhu, Q. (2020). On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm. Earth Planet. Phys., 4(6), 1–13doi: 10.26464/epp2020060

doi: 10.26464/epp2020060

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

Corresponding author: Zheng Xiang, xiangzheng@whu.edu.cnBinBin Ni, bbni@whu.edu.cn

Received Date: 2020-05-11
Web Publishing Date: 2020-08-01

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the initial phase of the storm, and the main phase of the storm. The electron pitch angle distributions (PADs) and electron flux dropouts during the initial and main phases of this storm were investigated, and the evolution of the radial profile of electron phase space density (PSD) and the (μ, K) dependence of electron PSD dropouts (where μ, K, and L* are the three adiabatic invariants) were analyzed. The energy-independent decay of electrons at L > 4.5 was accompanied by butterfly PADs, suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L > 4.5. The features of electron dropouts and 90°-peaked PADs were observed only for >1 MeV electrons at L < 4, indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm. Evaluations of the (μ, K) dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron (EMIC) waves support the scenario that the observed PSD drop peaks around L* = 3.9 may be caused mainly by the scattering of EMIC waves, whereas the drop peaks around L* = 4.6 may result from a combination of EMIC wave scattering and outward radial diffusion.

Key words: Radiation belt electron flux dropouts, geomagnetic storm, electron phase space density, magnetopause shadowing, wave–particle interactions

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X., Elkington, S. R., Monk, S., Reukauf, R., … Cervelli, B. (2013). The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: Characterization of Earth’s radiation belt high-energy particle populations. Space Sci. Rev., 179(1-4), 337–381. https://doi.org/10.1007/s11214-012-9950-9

Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, Jr. W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., … Zakrzewski, M. P. (2013). The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8

Bortnik, J., Thorne, R. M., O’Brien, T. P., Green, J. C., Strangeway, R. J., Shprits, Y. Y., and Baker, D. N. (2006). Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event. J. Geophys. Res. Space Phys., 111(A12), A12216. https://doi.org/10.1029/2006JA011802

Cao, X., Shprits, Y. Y., Ni, B. B., and Zhelavskaya, I. S. (2017). Scattering of ultra-relativistic electrons in the Van Allen radiation belts accounting for hot plasma effects. Sci. Rep., 7, 17719. https://doi.org/10.1038/s41598-017-17739-7

Claudepierre, S. G., O'Brien, T. P., Blake, J. B., Fennell, J. F., Roeder, J. L., Clemmons, J. H., Looper, M. D., Mazur, J. E., Mulligan, T. M., … Larsen, B. A. (2015). A background correction algorithm for Van Allen Probes MagEIS electron flux measurements. J. Geophys. Res. Space Phys., 120(7), 5703–5727. https://doi.org/10.1002/2015JA021171

Drozdov, A. Y., Shprits, Y. Y., Orlova, K. G., Kellerman, A. C., Subbotin, D. A., Baker, D. N., Spence, H. E., and Reeves, G. D. (2015). Energetic, relativistic, and ultrarelativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements. J. Geophys. Res. Space Phys., 120(5), 3574–3587. https://doi.org/10.1002/2014JA020637

Fok, M. C., Horne, R. B., Meredith, N. P., and Glauert, S. A. (2008). Radiation Belt Environment model: Application to space weather nowcasting. J. Geophys. Res. Space Phys., 113(A3), A03S08. https://doi.org/10.1029/2007JA012558

Fu, S., Yi, J., Ni, B. B., Zhou, R. X., Hu, Z. J., Cao, X., Gu, X. D., and Guo, D. Y. (2020). Combined scattering of radiation belt electrons by low-frequency hiss: Cyclotron, Landau, and bounce resonances. Geophys. Res. Lett., 47(5), e2020GL086963. https://doi.org/10.1029/2020GL086963

Glauert, S. A., Horne, R. B., and Meredith, N. P. (2014). Simulating the Earth’s radiation belts: Internal acceleration and continuous losses to the magnetopause. J. Geophys. Res. Space Phys., 119(9), 7444–7463. https://doi.org/10.1002/2014JA020092

Gu, X. D., Xia, S. J., Fu, S., Xiang, Z., Ni, B. B., Guo, J. G., and Cao, X. (2020a). Dynamic responses of radiation belt electron fluxes to magnetic storms and their correlations with magnetospheric plasma wave activities. Astrophy. J., 891(2), 127. https://doi.org/10.3847/1538-4357/ab71fc

Gu, X. D., He, Y., Ni, B. B., Fu, S., Hua, M., and Xiang, Z. (2020b). Scattering of radiation belt electrons caused by wave-particle interactions with magnetosonic waves associated with plasma density drop. Chinese J. Geophys. (in Chinese) , 63(6), 2121–2130. https://doi.org/10.6038/cjg2020N0384

Hudson, M. K., Baker, D. N., Goldstein, J., Kress, B. T., Paral, J., Toffoletto, F. R., and Wiltberger, M. (2014). Simulated magnetopause losses and Van Allen Probe flux dropouts. Geophys. Res. Lett., 41(4), 1113–1118. https://doi.org/10.1002/2014GL059222

Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., Elkington, S. R., Li, X., Kanekal, S. G., … Reeves, G. D. (2015). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. J. Geophys. Res. Space Phys., 120(9), 7240–7254. https://doi.org/10.1002/2015JA021234

Kang, S. B., Fok, M. C., Glocer, A., Min, K. W., Choi, C. R., Choi, E., and Hwang, J. (2016). Simulation of a rapid dropout event for highly relativistic electrons with the RBE model. J. Geophys. Res. Space Phys., 121(5), 4092–4102. https://doi.org/10.1002/2015JA021966

Keika, K., Nosé, M., Ohtani, S. I., Takahashi, K., Christon, S. P., and McEntire, R. W. (2005). Outflow of energetic ions from the magnetosphere and its contribution to the decay of the storm time ring current. J. Geophys. Res. Space Phys., 110(A9), A09210. https://doi.org/10.1029/2004JA010970

Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., and Grew, R. S. (2014). Electron losses from the radiation belts caused by EMIC waves. J. Geophys. Res. Space Phys., 119(11), 8820–8837. https://doi.org/10.1002/2014JA020366

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

Liu, Z. Y., Ni, B. B., Fu, S., Xiang, Z., Guo, J. G., Cao, X., Gu, X. D., Yi, J., Guo, Y. J., … Wang, J. Z. (2020). Multi-satellite observations of storm-time radiation belt electron phase space density variations. Chinese J. Geophys. (in Chinese) , 63(6), 2149–2158. https://doi.org/10.6038/cjg2020N0414

Ma, Q., Li, W., Thorne, R. M., Nishimura, Y., Zhang, X. J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Angelopoulos, V. (2016). Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt. J. Geophys. Res. Space Phys., 121(5), 4217–4231. https://doi.org/10.1002/2016JA022507

Ma, X., Lu, J. Y., and Wang, M. (2017). Pressure balance across the magnetopause during the solar wind event on 5 June 1998. Planet. Space Sci., 139, 11–17. https://doi.org/10.1016/j.pss.2017.02.014

Matsumura, C., Miyoshi, Y., Seki, K., Saito, S., Angelopoulos, V., and Koller, J. (2011). Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing. J. Geophys. Res. Space Phys., 116(A6), A06212. https://doi.org/10.1029/2011JA016575

Meredith, N. P., Horne, R. B., Kersten, T., Fraser, B. J., and Grew, R. S. (2014). Global morphology and spectral properties of EMIC waves derived from CRRES observations. J. Geophys. Res. Space Phys., 119(7), 5328–5342. https://doi.org/10.1002/2014JA020064

Morley, S. K., Friedel, R. H. W., Cayton, T. E., and Noveroske, E. (2010). A rapid, global and prolonged electron radiation belt dropout observed with the Global Positioning System constellation. Geophys. Res. Lett., 37(6), L06102. https://doi.org/10.1029/2010GL042772

Morley, S. K., Henderson, M. G., Reeves, G. D., Friedel, R. H. W., and Baker, D. N. (2013). Phase space density matching of relativistic electrons using the Van Allen probes: REPT results. Geophys. Res. Lett., 40(18), 4798–4802. https://doi.org/10.1002/grl.50909

Murphy, K. R., Mann, I. R., Sibeck, D. G., Rae, I. J., Watt, C. E. J., Ozeke, L. G., Kanekal, S. G., and Baker, D. N. (2020). A framework for understanding and quantifying the loss and acceleration of relativistic electrons in the outer radiation belt during geomagnetic storms. Space Wea., 18(5), e2020SW002477. https://doi.org/10.1029/2020SW002477

Ni, B. B., Bortnik, J., Thorne, R. M., Ma, Q. L., and Chen, L. J. (2013). Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. J. Geophys. Res. Space Phys., 118(12), 7740–7751. https://doi.org/10.1002/2013JA019260

Ni, B. B., Zou, Z. Y., Gu, X. D., Zhou, C., Thorne, R. M., Bortnik, J., Shi, R., Zhao, Z. Y., Baker, D. N., … Li, X. L. (2015a). Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations. J. Geophys. Res. Space Phys., 120(6), 4863–4876. https://doi.org/10.1002/2015JA021065

Ni, B. B., Cao, X., Zou, Z. Y., Zhou, C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., … Xie, L. (2015b). Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J. Geophys. Res. Space Phys., 120(9), 7357–7373. https://doi.org/10.1002/2015JA021466

Ni, B. B., Zou, Z. Y., Li, X. L., Bortnik, J., Xie, L., and Gu, X. D. (2016a). Occurrence characteristics of outer zone relativistic electron butterfly distribution: A survey of Van Allen Probes REPT measurements. Geophys. Res. Lett., 43(11), 5644–5652. https://doi.org/10.1002/2016GL069350

Ni, B. B., Xiang, Z., Gu, X. D., Shprits, Y. Y., Zhou, C., Zhao, Z. Y., Zhang, X. G., and Zuo, P. B. (2016b). Dynamic responses of the Earth's radiation belts during periods of solar wind dynamic pressure pulse based on normalized superposed epoch analysis. J. Geophys. Res. Space Phys., 121(9), 8523–8536. https://doi.org/10.1002/2016JA023067

Ni, B. B., Huang, H., Zhang, W. X., Gu, X. D., Zhao, H., Li, X. L., Baker, D., Fu, S., Xiang, Z., and Cao, X. (2019). Parametric sensitivity of the formation of reversed electron energy spectrum caused by Plasmaspheric Hiss. Geophys. Res. Lett., 46(8), 4134–4143. https://doi.org/10.1029/2019GL082032

Ni, B. B., Yan, L., Fu, S., Gu, X. D., Cao, X., Xiang, Z., and Zhang, Y. N. (2020). Distinct formation and evolution characteristics of outer radiation belt electron butterfly pitch angle distributions observed by Van Allen Probes. Geophys. Res. Lett., 47(4), e2019GL086487. https://doi.org/10.1029/2019GL086487

Ozeke, L. G., Mann, I. R., Murphy, K. R., Sibeck, D. G., and Baker, D. N. (2017). Ultra-relativistic radiation belt extinction and ULF wave radial diffusion: Modeling the September 2014 extended dropout event. Geophys. Res. Lett., 44(6), 2624–2633. https://doi.org/10.1002/2017GL072811

Reeves, G. D., McAdams, K. L., Friedel, R. H. W., and O’Brien, T. P. (2003). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett., 30(10), 1529. https://doi.org/10.1029/2002GL016513

Roelof, E. C., and Sibeck, D. G. (1993). Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J. Geophys. Res. Space Phys., 98(A12), 21421–21450. https://doi.org/10.1029/93JA02362

Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., and Anderson, R. R. (2001). An empirical plasmasphere and trough density model: CRRES observations. J. Geophys. Res. Space Phys., 106(A11), 25631–25641. https://doi.org/10.1029/2000JA000286

Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., and Kanekal, S. G. (2006). Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. Space Phys., 111(A11), A11214. https://doi.org/10.1029/2006JA011657

Shprits, Y. Y., Subbotin, D., Drozdov, A., Usanova, M. E., Kellerman, A., Orlova, K., Baker, D. N., Turner, D. L., and Kim, K. C. (2013). Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nat. Phys., 9(11), 699–703. https://doi.org/10.1038/nphys2760

Shprits, Y. Y., Drozdov, A. Y., Spasojevic, M., Kellerman, A. C., Usanova, M. E., Engebretson, M. J., Agapitov, O. V., Zhelavskaya, I. S., Raita, T. J., … Aseev, N. A. (2016). Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts. Nat. Commun., 7, 12883. https://doi.org/10.1038/ncomms12883

Shprits, Y. Y., Kellerman, A., Aseev, N., Drozdov, A. Y., and Michaelis, I. (2017). Multi-MeV electron loss in the heart of the radiation belts. Geophys. Res. Lett., 44(3), 1204–1209. https://doi.org/10.1002/2016GL072258

Shue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., … Kawano, H. (1998). Magnetopause location under extreme solar wind conditions. J. Geophys. Res. Space Phys., 103(A8), 17691–17700. https://doi.org/10.1029/98JA01103

Silin, I., Mann, I. R., Sydora, R. D., Summers, D., and Mace, R. L. (2011). Warm plasma effects on electromagnetic ion cyclotron wave MeV electron interactions in the magnetosphere. J. Geophys. Res. Space Phys., 116(A5), A05215. https://doi.org/10.1029/2010JA016398

Su, Z. P., Zhu, H., Xiao, F. L., Zong, Q. G., Zhou, X. Z., Zheng, H. N., Wang, Y. M., Wang, S., Hao, Y. X., … Wygant, J. R. (2015). Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. Nat. Commun., 6, 10096. https://doi.org/10.1038/ncomms10096

Su, Z. P., Gao, Z. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N., and Wygant, J. R. (2017). Rapid loss of radiation belt relativistic electrons by EMIC waves. J. Geophys. Res. Space Phys., 122(10), 9880–9897. https://doi.org/10.1002/2017JA024169

Summers, D., and Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. Space Phys., 108(A4), 1143. https://doi.org/10.1029/2002JA009489

Summers, D., Ni, B. B., and Meredith, N. P. (2007a). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res. Space Phys., 112(A4), A04206. https://doi.org/10.1029/2006JA011801

Summers, D., Ni, B. B., and Meredith, N. P. (2007b). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. Space Phys., 112(A4), A04207. https://doi.org/10.1029/2006JA011993

Suvorova, A., Dmitriev, A., Chao, J. K., Thomsen, M., and Yang, Y. H. (2005). Necessary conditions for geosynchronous magnetopause crossings. J. Geophys. Res. Space Phys., 110(A1), A01206. https://doi.org/10.1029/2003JA010079

Suvorova, A. V., Dmitriev, A. V., and Kuznetsov, S. N. (1999). Dayside magnetopause models. Radiat. Meas., 30(5), 687–692. https://doi.org/10.1016/S1350-4487(99)00220-6

Thorne, R. M., Ni, B. B., Tao, X., Horne, R. B., and Meredith, N. P. (2010). Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature, 467(7318), 943–946. https://doi.org/10.1038/nature09467

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Baker, D. N., Spence, H. E., Reeves, G. D., Henderson, M. G., … Angelopoulos, V. (2013). Evolution and slow decay of an unusual narrow ring of relativistic electrons near L~3 2 following the September 2012 magnetic storm. Geophys. Res. Lett., 40(14), 3507–3511. https://doi.org/10.1002/grl.50627

Tu, W. C., Cunningham, G. S., Chen, Y., Morley, S. K., Reeves, G. D., Blake, J. B., and Spence, H. (2014). Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes. Geophys. Res. Lett., 41(5), 1359–1366. https://doi.org/10.1002/2013GL058819

Tu, W. C., Xiang, Z., and Morley, S. K. (2019). Modeling the magnetopause shadowing loss during the June 2015 dropout event. Geophys. Res. Lett., 46(16), 9388–9396. https://doi.org/10.1029/2019GL084419

Turner, D. L., Morley, S. K., Miyoshi, Y., Ni, B. B., and Huang, C. L. (2012a). Outer radiation belt flux dropouts: Current understanding and unresolved questions. In: D. Summers, et al. (Eds.), Dynamics of the Earth's Radiation Belts and Inner Magnetosphere (pp. 195-211). Washington: AGU. https://doi.org/10.1029/2012GM001310 222

Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos, V. (2012b). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys., 8(3), 208–212. https://doi.org/10.1038/nphys2185

Turner, D. L., Angelopoulos, V., Morley, S. K., Henderson, M. G, Reeves, G. D., Li, W., Baker, D. N., Huang, C. L., Boyd, A., … Rodriguez, J. V. (2014). On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event. J. Geophys. Res. Space Phys., 119(3), 1530–1540. https://doi.org/10.1002/2013JA019446

Turner, D. L., and Ukhorskiy, A. Y. (2020). Outer radiation belt losses by magnetopause incursions and outward radial transport: New insight and outstanding questions from the Van Allen Probes era. In: A. N. Jaynes, et al. (Eds.), The Dynamic Loss of Earth’s Radiation Belts (pp. 1-28). Amsterdam: Elsevier. https: //doi.org/10.1016/B978-0-12-813371-2.00001-9222

Ukhorskiy, A. Y., Sitnov, M. I., Millan, R. M., Kress, B. T., Fennell, J. F., Claudepierre, S. G., and Barnes, R. J. (2015). Global storm time depletion of the outer electron belt. J. Geophys. Res. Space Phys., 120(4), 2543–2556. https://doi.org/10.1002/2014JA020645

Usanova, M. E., Drozdov, A., OrlovaI, K., Mann, R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024

Xiang, Z., Ni, B. B., Zhou, C., Zou, Z. Y., Gu, X. D., Zhao, Z. Y., Zhang, X. G., Zhang, X. X., Zhang, S. Y., … Reeves, G. (2016). Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse. Ann. Geophys., 34(5), 493–509. https://doi.org/10.5194/angeo-34-493-2016

Xiang, Z., Tan, J. Q., Ni, B. B., Gu, X. D., Cao, X., Zou, Z. Y., Zhou, C., Fu, S.,.. Wang, H. (2017a). A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Phys. Sin. (in Chinese) , 66(3), 039401. https://doi.org/10.7498/aps.66.039401

Xiang, Z., Tu, W. C., Li, X. L., Ni, B. B., Morley, S. K., and Baker, D. N. (2017b). Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes. J. Geophys. Res. Space Phys., 122(10), 9858–9879. https://doi.org/10.1002/2017JA024487

Xiang, Z., Tu, W. C., Ni, B. B., Henderson, M. G., and Cao, X. (2018). A statistical survey of radiation belt dropouts observed by Van Allen Probes. Geophys. Res. Lett., 45(16), 8035–8043. https://doi.org/10.1029/2018GL078907

Xiang, Z., Li, X. L., Selesnick, R., Temerin, M. A., Ni, B. B., Zhao, H., Zhang, K., and Khoo, L. Y. (2019). Modeling the quasi-trapped electron fluxes from Cosmic Ray Albedo Neutron Decay (CRAND). Geophys. Res. Lett., 46(4), 1919–1928. https://doi.org/10.1029/2018GL081730

Xiang, Z., Li, X. L., Temerin, M. A., Ni, B. B., Zhao, H., Zhang, K., and Khoo, L. Y. (2020). On energetic electron dynamics during geomagnetic quiet times in Earth's inner radiation belt due to atmospheric collisional loss and CRAND as a source. J. Geophys. Res. Space Phys., 125(2), e2019JA027678. https://doi.org/10.1029/2019JA027678

Young, D. T., Perraut, S., Roux, A., De Villedary, C., Gendrin, R., Korth, A., Kremser, G., and Jones, D. (1981). Wave-particle interactions near ΩHe+ observed on GEOS 1 and 2 1. Propagation of ion cyclotron waves in He+-rich plasma. J. Geophys. Res. Space Phys., 86(A8), 6755–6772. https://doi.org/10.1029/JA086iA08p06755

Zhang, X. J., Li, W., Ma, Q., Thorne, R. M., Angelopoulos, V., Bortnik, J., Chen, L., Kletzing, C. A., Kurth, W. S., … Fennell, J. F. (2016). Direct evidence for emic wave scattering of relativistic electrons in space. J. Geophys. Res. Space Phys., 121(7), 6620–6631. https://doi.org/10.1002/2016JA022521

Zou, Z. Y., Zuo, P. B., Ni, B. B., Gao, Z. L., Wang, G., Zhao, Z. Y., Feng, X. S., and Wei, F. S. (2020). Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event. Astrophys. J. Lett., 895(1), L24. https://doi.org/10.3847/2041-8213/ab9179

[1]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[2]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[3]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[4]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[5]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[6]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[7]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[8]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[9]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[10]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[11]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[12]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[13]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[14]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[15]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[16]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[17]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[18]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[19]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[20]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu