Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Luo, H., Du, A. M., Zhang, S. H., Ge, Y. S., Zhang, Y., Sun, S. Q., Zhao, L., Tian, L., and Li, S. Y. (2022). On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling. Earth Planet. Phys., 6(3), 275–283. http://doi.org/10.26464/epp2022022

2022, 6(3): 275-283. doi: 10.26464/epp2022022

PLANETARY SCIENCES

On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China

Corresponding author: Hao Luo, luohao@mail.iggcas.ac.cn

Received Date: 2021-12-08
Web Publishing Date: 2022-04-11

In a recent paper (Luo H et al., 2022), we found that the peak amplitudes of diurnal magnetic variations, measured during martian days (sols) at the InSight landing site, exhibited quasi Carrington-Rotation (qCR) periods at higher eigenmodes of the natural orthogonal components (NOC); these results were based on ~664 sols of magnetic field measurements. However, the source of these periodic variations is still unknown. In this paper we introduce the neutral-wind driven ionospheric dynamo current model (e.g., Lillis et al., 2019) to investigate the source. Four candidates — the draped IMF, electron density/plasma density, the neutral densities, and the electron temperature in the ionosphere with artificial qCR periodicity, are applied in the modeling to find the main factor likely to be causing the observed surface magnetic field variations that exhibit the same qCR periods. Results show that the electron density/plasma density, which controls the total conductivity in the dynamo region, appears to account for the greatest part of the surface qCR variations; its contribution reaches about 67.6%. The draped IMF, the neutral densities, and the electron temperature account, respectively, for only about 12.9%, 10.3%, and 9.2% of the variations. Our study implies that the qCR magnetic variations on the Martian surface are due primarily to variations of the dynamo currents caused by the electron density variations. We suggest also that the time-varying fields with the qCR period could be used to probe the Martian interior's electrical conductivity structure to a depth of at least 700 km.

Key words: InSight; sol magnetic variations; Carrington Rotation (CR) periodicity

Banerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M., Johnson, C. L., Lognonné, P., Spiga, A., Spohn, T., … Wieczorek, M. (2020). Initial results from the InSight mission on Mars. Nat. Geosci., 13(3), 183–189. https://doi.org/10.1038/s41561-020-0544-y

Banfield, D., Rodriguez-Manfredi, J. A., Russell, C. T., Rowe, K. M., Leneman, D., Lai, H. R., Cruce, P. R., Means, J. D., Johnson, C. L., … Banerdt, W. B. (2019). InSight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev., 215, 4. https://doi.org/10.1007/s11214-018-0570-x

Boscoboinik, G., Bertucci, C., Gomez, D., Morales, L., Mazelle, C., Halekas, J., Gruesbeck, J., Mitchell, D., Jakosky, B., and Penou, E. (2020). The magnetic structure of the subsolar MPB current layer from MAVEN observations: Implications for the Hall electric force. Geophys. Res. Lett., 47(21), e2020GL089230. https://doi.org/10.1029/2020GL089230

Brain, D. A., Mitchell, D. L., and Halekas, J. S. (2006). The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 182(2), 464-473.222

Briggs, B. H. (1984). The variability of ionospheric dynamo currents. J. Atmos. Terr. Phys., 46(5), 419–429. https://doi.org/10.1016/0021-9169(84)90086-2

Chen, G. X., Xu, W. Y., Du, A. M., Wu, Y. Y., Chen, B., and Liu, X. C. (2007). Statistical characteristics of the day-to-day variability in the geomagnetic Sq field. J. Geophys. Res.:Space Phys., 112(A6), A06320. https://doi.org/10.1029/2006JA012059

Chi, P. J., Russell, C. T., Joy, S., Banfield, D., Johnson, C. L., Ma, Y., Mittelholz, A., and Yu, Y. (2019). Magnetic pulsations on Martian surface: initial results from InSight fluxgate magnetometer. In Proceedings of the 50th Lunar and Planetary Science Conference. The Woodlands, Texas: Lunar and Planetary Institute.222

Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res.:Planets, 120, 278–286. https://doi.org/10.1002/2014JE004726

De Michelis, P., Tozzi, R., and Consolini, G. (2010). Principal components' features of mid-latitude geomagnetic daily variation. Ann. Geophys., 28, 2213–2226. https://doi.org/10.5194/angeo-28-2213-2010

Du, A. M., Zhang, Y., Li, H. Y., Qiao, D. H., Yi, Z., Zhang, T. L., Meng, L. F., Ge, Y. S., Luo, H., … Dai, J. L. (2020). The Chinese Mars ROVER fluxgate magnetometers. Space Sci. Rev., 216(8), 135. https://doi.org/10.1007/s11214-020-00766-8

Duru, F., Brain, B., Gurnett, D. A., Halekas, J., Morgan, D. D., and Wilkinson, C. J. (2019). Electron density profiles in the upper ionosphere of Mars from 11 years of MARSIS data: Variability due to seasons, solar cycle, and crustal magnetic fields. J. Geophys. Res.:Space Phys., 124(4), 3057–3066. https://doi.org/10.1029/2018JA026327

Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., and Jakosky, B. M. (2015). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett., 42(21), 8846–8853. https://doi.org/10.1002/2015GL065280

Espley, J. R., Delory, G. T., and Cloutier, P. A. (2006). Initial observations of low-frequency magnetic fluctuations in the Martian ionosphere. J. Geophys. Res.:Planets, 111(E6), E06S22. https://doi.org/10.1029/2005JE002587

Fallows, K., Withers, P., and Matta, M. (2015a). An observational study of the influence of solar zenith angle on properties of the M1 layer of the Mars ionosphere. J. Geophys. Res.:Space Phys., 120(2), 1299–1310. https://doi.org/10.1002/2014JA020750

Fallows, K., Withers, P., and Matta, M. (2015b). Numerical simulations of the influence of solar zenith angle on properties of the M1 layer of the Mars ionosphere. J. Geophys. Res.:Space Phys., 120(8), 6707–6721. https://doi.org/10.1002/2014JA020947

Fillingim, M. O., Lillis, R. J., England, S. L., Peticolas, L. M., Brain, D. A., Halekas, J. S., Paty, C., Lummerzheim, D., and Bougher, S. W. (2012). On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars. Earth Planets Space, 64(2), 5. https://doi.org/10.5047/eps.2011.04.010

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res.:Planets, 104(E10), 24155–24175. https://doi.org/10.1029/1999JE001025

González-Galindo, F., Chaufray, J. Y., López-Valverde, M. A., Gilli, G., Forget, F., Leblanc, F., Modolo, R., Hess, S., and Yagi, M. (2013). Three-dimensional Martian ionosphere model: I The photochemical ionosphere below 180 km. J. Geophys. Res.:Planets, 118(10), 2105–2123. https://doi.org/10.1002/Jgre.20150

Guharay, A., Batista, P. P., Buriti, R. A., and Schuch, N. J. (2020). Signature of the 27-day oscillation in the MLT tides and its relation with solar radiation at low latitudes. Earth Planets Space, 72, 51. https://doi.org/10.1186/s40623-020-01149-7

Hibberd, F. H. (1981). Day-to-day variability of the Sq geomagnetic field variation. Aust. J. Phys., 34(1), 81–90. https://doi.org/10.1071/PH810081

Hughes, J., Gasperini, F., and Forbes, J. M. (2022). Solar rotation effects in Martian thermospheric density as revealed by five years of MAVEN observations. J. Geophys. Res.:Planets, 127, e2021JE007036. https://doi.org/10.1029/2021JE007036

Jiang, C. H., Tian, R., Wei, L. H., Yang, G. B., and Zhao, Z. Y. (2022). Modeling of kilometer-scale ionospheric irregularities at Mars. Earth Planet. Phys., 6(2), 213–217. https://doi.org/10.26464/epp2022011

Johnson, C. L., Mittelholz, A., Langlais, B., Russell, C. T., Ansan, V., Banfield, D., Chi, P. J., Fillingim, M. O., Forget, F., … Banerdt, W. B. (2020). Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nat. Geosci., 13(3), 199–204. https://doi.org/10.1038/s41561-020-0537-x

Lillis, R. J., Fillingim, M. O., Ma, Y. J., Gonzalez-Galindo, F., Forget, F., Johnson, C. L., Mittelholz, A., Russell, C. T., Andersson, L., and Fowler, C. M. (2019). Modeling wind-driven ionospheric dynamo currents at Mars: Expectations for InSight magnetic field measurements. Geophys. Res. Lett., 46(10), 5083–5091. https://doi.org/10.1029/2019GL082536

Luo, H., Du, A. M., Ge, Y. S., Johnson, C. L., Mittelholz, A., Zhang, Y., Sun, S. Q., Zhao, L., Yu, Y., … Xu, W. Y. (2022). Natural orthogonal component analysis of daily magnetic variations at the Martian surface: InSight observations. J. Geophys. Res.:Planets, 127(2), e2021JE007112. https://doi.org/10.1029/2021JE007112

Lyons, L. (2003). Space Plasma Physics in Encyclopedia of Physical Science and Technology (3rd ed).222

Millour, E., Forget, F., and Lewis, S. R. (2017), The Mars Climate Database (MCD version 5.3), 2017/04/1.222

Mittelholz, A., Johnson, C. L., and Lillis, R. J. (2017). Global-scale external magnetic fields at Mars measured at satellite altitude. J. Geophys. Res.:Planets, 122(6), 1243–1257. https://doi.org/10.1002/2017JE005308

Mittelholz, A., Johnson, C. L., Thorne, S. N., Joy, S., Barrett, E., Fillingim, M. O., Forget, F., Langlais, B., Russell, C. T., … Banerdt, W. B. (2020). The origin of observed magnetic variability for a sol on Mars from InSight. J. Geophys. Res.:Planets, 125(9), e2020JE006505. https://doi.org/10.1029/2020JE006505

Nielsen, E., Zou, H., Gurnett, D. A., Kirchner, D. L., Morgan, D. D., Huff, R., Orosei, R., Safaeinili, A., Plaut, J. J., and Picardi, G. (2006). Observations of vertical reflections from the topside Martian ionosphere. Space Sci. Rev., 126(1-4), 373–388. https://doi.org/10.1007/s11214-006-9113-y

Opgenoorth, H. J., Dhillon, R. S., Rosenqvist, L., Lester, M., Edberg, N. J. T., Milan, S. E., Withers, P., and Brain, D. (2010). Day-side ionospheric conductivities at Mars. Planet. Space Sci., 58(10), 1139–1151. https://doi.org/10.1016/j.pss.2010.04.004

Ramstad, R., Brain, D., Dong, Y., Espley, J., Halekas, J., and Jakosky, B. (2020). The global current systems of the Martian induced magnetosphere. Nat. Astron., 4, 979–985. https://doi.org/10.1038/s41550-020-1099-y

Schunk, R., and Nagy, A. (2009). Ionospheres: Physics, Plasma Physics, and Chemistry (2nd ed). New York: Cambridge University Press.222

Smrekar, S. E., Lognonné, P., Spohn, T., Banerdt, W. B., Breuer, D., Christensen, U., Dehant, V., Drilleau, M., Folkner, W., … Wieczorek, M. (2019). Pre-mission InSights on the Interior of Mars. Space Sci. Rev., 215, 3. https://doi.org/10.1007/s11214-018-0563-9

Venkateswara Rao, N., Balan, N., and Patra, A. K. (2014). Solar rotation effects on the Martian ionosphere. J. Geophys. Res.:Space Phys., 119(8), 6612–6622. https://doi.org/10.1002/2014JA019894

Verhoeven, O., and Vacher, P. (2016). Laboratory-based electrical conductivity at Martian mantle conditions. Planet. Space Sci., 134, 29–35. https://doi.org/10.1016/j.pss.2016.10.005

Withers, P., and Mendillo, M. (2005). Response of peak electron densities in the Martian ionosphere to day-to-day changes in solar flux due to solar rotation. Planet. Space Sci., 53(14-15), 1401–1418. https://doi.org/10.1016/j.pss.2005.07.010

Withers, P., Fallows, K., and Matta, M. (2014). Predictions of electron temperatures in the Mars ionosphere and their effects on electron densities. Geophys. Res. Lett., 41(8), 2681–2686. https://doi.org/10.1002/2014GL059683

Withers, P., Morgan, D. D., and Gurnett, D. A. (2015). Variations in peak electron densities in the ionosphere of Mars over a full solar cycle. Icarus, 251, 5–11. https://doi.org/10.1016/j.icarus.2014.08.008

Xu, W. Y. (1992). Effects of the magnetospheric currents on the Sq-field and a new magnetic index characterizing Sq Dynamo current intensity. J. Geomag. Geoelectr., 44(6), 449–458. https://doi.org/10.5636/jgg.44.449

Xu, W. Y., and Kamide, Y. (2004). Decomposition of daily geomagnetic variations by using method of natural orthogonal component. J. Geophys. Res.:Space Phys., 109(A5), A05218. https://doi.org/10.1029/2003JA010216

Yao, M. J., Cui, J., Wu, X. S., Huang, Y. Y., and Wang, W. R. (2019). Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment. Earth Planet. Phys., 3(4), 283–289. https://doi.org/10.26464/epp2019029

[1]

D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004

[2]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[3]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

[4]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[5]

ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069

[6]

YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005

[7]

WeiLong Rao, WenKe Sun, 2022: Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data, Earth and Planetary Physics, 6, 228-240. doi: 10.26464/epp2022021

[8]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[9]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[10]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[11]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[12]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[13]

ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011

[14]

SuPing Duan, Chi Wang, Weining William Liu, ZhaoHai He, 2021: Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by THEMIS, Earth and Planetary Physics, 5, 239-250. doi: 10.26464/epp2021031

[15]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[16]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[17]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[18]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[19]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[20]

XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling

Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li