Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Gu, H., Cui, J., He, Z. G., and Zhong, J. H. (2020). A MAVEN investigation of O++ in the dayside Martian ionosphere. Earth Planet. Phys., 4(1), 11–16.doi: 10.26464/epp2020009

2020, 4(1): 11-16. doi: 10.26464/epp2020009

PLANETARY SCIENCES

A MAVEN investigation of O++ in the dayside Martian ionosphere

1. 

State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China

2. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230000, China

4. 

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2019-09-28
Web Publishing Date: 2020-01-01

O++ is an interesting species in the ionospheres of both the Earth and Venus. Recent measurements made by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on board the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft provide the first firm detection of O++ in the Martian ionosphere. This study is devoted to an evaluation of the dominant O++ production and destruction channels in the dayside Martian ionosphere, by virtue of NGIMS data accumulated over a large number of MAVEN orbits. Our analysis reveals the dominant production channels to be double photoionization of O at low altitudes and photoionization of O+ at high altitudes, respectively, in response to the varying degree of O ionization. O++ destruction is shown to occur mainly via charge exchange with CO2 at low altitudes and with O at high altitudes. In the dayside median sense, an exact balance between O++ production and destruction is suggested by the data below 200 km. The apparent discrepancy from local photochemical equilibrium at higher altitudes is interpreted as a signature of strong O++ escape on Mars, characterized by an escape rate of 6×1022 s–1.

Key words: Mars; ionosphere; doubly ionized oxygen; MAVEN

Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., and Jakosky, B. M. (2015). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett., 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146

Bougher, S., Jakosky, B., Halekas, J., Grebowsky, J., Luhmann, J., Mahaffy, P., Connerney, J., Eparvier, F., Ergun, R.,.. Yelle, R. V. (2015). Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability. Science, 350(6261), aad0459. https://doi.org/10.1126/science.aad0459

Breig, E. L., Torr, M. R., Torr, D. G., Hanson, W. B., Hoffman, J. H., Walker, J. G. G., and Nier, A. O. (1977). Doubly charged atomic oxygen ions in the thermosphere, 1. Photochemistry. J. Geophys. Res. Space Phys., 82(7), 1008–1012. https://doi.org/10.1029/JA082i007p01008

Breig, E. L., Torr, M. R., and Kayser, D. C. (1982). Observations and photochemistry of O++ in the daytime thermosphere. J. Geophys. Res. Space Phys., 87(A9), 7653–7665. https://doi.org/10.1029/JA087iA09p07653

Cao, Y. T., Cui, J., Wu, X. S., Guo, J. P., and Wei, Y. (2019). Structural variability of the nightside Martian ionosphere near the terminator: implications on plasma sources. J. Geophys. Res. Planets, 124(E6), 1495–1511. https://doi.org/10.1029/2019JE005970

Chaufray, J. Y., Leblanc, F., Quémerais, E., and Bertaux, J. L. (2009). Martian oxygen density at the exobase deduced from OI 130.4-nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express. J. Geophys. Res. Planets, 114(E2). https://doi.org/10.1029/2008JE003130

Chen, R. H., Cravens, T. E., and Nagy, A. F. (1978). The Martian ionosphere in light of the Viking observations. J. Geophys. Res. Space Phys., 83(A8), 3871–3876. https://doi.org/10.1029/JA083iA08p03871

Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D. L., and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284(5415), 794–798. https://doi.org/10.1126/science.284.5415.794

Cui, J., Galand, M., Yelle, R. V., Wahlund, J.-E., Ågren, K., Waite, Jr. J. H., and Dougherty, M. K. (2010). Ion transport in Titan’s upper atmosphere. J. Geophys. Res. Space Phys., 115(A6), A06314. https://doi.org/10.1029/2009JA014563

Cui, J., Galand, M., Coates, A. J., Zhang, T. L., and Müller-Wodarg, I. C. F. (2011). Suprathermal electron spectra in the Venus ionosphere. J. Geophys. Res. Space Phys., 116(A4), A04321. https://doi.org/10.1029/2010JA016153

Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res. Planets, 120(E2), 278–286. https://doi.org/10.1002/2014JE004726

Cui, J., Cao, Y. T., Wu, X. S., Xu, S. S., Yelle, R. V., Stone, S., Vigren, E., Edberg, N. J. T., Shen, C. L., … and Wei, Y. (2019). Evaluating local ionization balance in the nightside Martian upper atmosphere during MAVEN Deep Dip campaigns. Astrophys. J. Lett., 876(1), L12. https://doi.org/10.3847/2041-8213/ab1b34

Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2

Fowler, C. M., Andersson, L., Ergun, R. E., Morooka, M., Delory, G., Andrews, D. J., Lillis, R. J., McEnulty, T., Weber, T. D.,.. Jakosky, B. M. (2015). The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett., 42(1), 8854–8861. https://doi.org/10.1002/2015GL065267

Fox, J. L., and Victor, G. A. (1981). O++ in the Venusian ionosphere. J. Geophys. Res. Space Phys., 86(A4), 2438–2442. https://doi.org/10.1029/JA086iA04p02438

Fox, J. L. (1997). Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution. Geophys. Res. Lett., 24(22), 2901–2904. https://doi.org/10.1029/97GL52842

Fox, J. L. (2009). Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. Planets, 114(E12), E12005. https://doi.org/10.1029/2009JE003432

Geiss, J., Balsiger, H., Eberhardt, P., Walker, H. P., Weber, L., Young, D. T., and Rosenbauer, H. (1978). Dynamics of magnetospheric ion composition as observed by the GEOS mass spectrometer. Space Sci. Rev., 22(5), 537–566. https://doi.org/10.1007/BF00223940

Geiss, J., and Young, D. T. (1981). Production and transport of O++ in the ionosphere and plasmasphere. J. Geophys. Res. Space Phys., 86(A6), 4739–4750. https://doi.org/10.1029/JA086iA06p04739

Ghosh, S., Mahajan, K. K., Grebowsky, J. M., and Nath, N. (1995). Morphology of O++ ions and their maintenance in the nightside Venus ionosphere. J. Geophys. Res. Space Phys., 100(A12), 23983–23991. https://doi.org/10.1029/95JA01581

Girazian, Z., Mahaffy, P. R., Lillis, R. J., Benna, M., Elrod, M., and Jakosky, B. M. (2017a). Nightside ionosphere of Mars: Composition, vertical structure, and variability. J. Geophys. Res. Space Phys., 122(A4), 4712–4725. https://doi.org/10.1002/2016JA023508

Girazian, Z., Mahaffy, P., Lillis, R. J., Benna, M., Elrod, M., Fowler, C. M., and Mitchell, D. L. (2017b). Ion densities in the nightside ionosphere of Mars: Effects of electron impact ionization. Geophys. Res. Lett., 44(22), 11248–11256. https://doi.org/10.1002/2017GL075431

Hedin, A. E. (1983). A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J. Geophys. Res. Space Phys., 88(A12), 10170–10188. https://doi.org/10.1029/JA088iA12p10170

Henry, R. J. W. (1968). Photoionization cross sections for N and O+. J. Chem. Phys., 48(8), 3635–3638. https://doi.org/10.1063/1.1669662

Howorka, F., Viggiano, A. A., Albritton, D. L., Ferguson, E. E., and Fehsenfeld, F. C. (1979). Laboratory studies of O++ reactions of ionospheric importance. J. Geophys. Res. Space Phys., 84(A10), 5941–5942. https://doi.org/10.1029/JA084iA10p05941

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Johnsen, R., and Biondi, M. A. (1978). Measurements of the reaction rates of O++ ions with N2 and O2 at thermal energy and their ionospheric implications. Geophys. Res. Lett., 5(10), 847–848. https://doi.org/10.1029/GL005i010p00847

Kar, J., Mahajan, K. K., and Kohli, R. (1996). On the outflow of O2+ ions at Mars. J. Geophys. Res. Planets, 101(E5), 12747–12752. https://doi.org/10.1029/95JE03526

Laher, R. R., and Gilmore, F. R. (1990). Updated excitation and ionization cross sections for electron impact on atomic oxygen. J. Phys. Chem. Ref. Data, 19(1), 277–305. https://doi.org/10.1063/1.555872

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015a). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329

Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., … Nolan, J. T. (2015b). The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev., 195(1-4), 59–73. https://doi.org/10.1007/s11214-014-0091-1

Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res. Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559

Taylor, Jr. H. A., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., and Daniell, Jr. R. E. (1980). Global observations of the composition and dynamics of the ionosphere of Venus: Implications for the solar wind interaction. J. Geophys. Res. Space Phys., 85(A13), 7765–7777. https://doi.org/10.1029/JA085iA13p07765

Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512

Thissen, R., Witasse, O., Dutuit, O., Wedlund, C. S., Gronoff, G., and Lilensten, J. (2011). Doubly-charged ions in the planetary ionospheres: a review. Phys. Chem. Chem. Phys., 13(41), 18264–18287. https://doi.org/10.1039/C1CP21957J

Victor, G. A., and Constantinides, E. R. (1979). Double photoionization and doubly charged ions in the thermosphere. Geophys. Res. Lett., 6(6), 519–522. https://doi.org/10.1029/GL006i006p00519

Withers, P., Fallows, K., Girazian, Z., Matta, M., Häusler, B., Hinson, D., Tyler, L., Morgan, D., Pätzold, M.,.. Witasse, O. (2012). A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett., 39(18), L18202. https://doi.org/10.1029/2012GL053193

Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019). The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res. Planets, 124(3), 734–751. https://doi.org/10.1029/2018JE005895

[1]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[2]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[3]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[4]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[5]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[6]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[7]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[8]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[9]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics. doi: 10.26464/epp2020025

[10]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[11]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[12]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[13]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[14]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[15]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A MAVEN investigation of O++ in the dayside Martian ionosphere

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong