Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, M. R., Zhou, C., and Feng, T. (2023). Electron acceleration by Langmuir turbulence in ionospheric heating. Earth Planet. Phys., 7(1), 1–7. http://doi.org/10.26464/epp2023001

doi: 10.26464/epp2023001

SPACE PHYSICS: IONOSPHERIC PHYSICS

Electron acceleration by Langmuir turbulence in ionospheric heating

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

Key points:
  • Electron acceleration by Langmuir turbulence in ionospheric heating is simulated by two models: a general two-fluid method with the Fokker–Planck equation and the Vlasov–Poisson system.
  • The significant acceleration of electrons corresponds to the extension of the wavenumber spectrum, which is caused by Langmuir turbulence.
  • The time evolution of electron holes in phase space at the same spatial scale as the Langmuir wave is presented by means of the Vlasov–Poisson code.

Corresponding author: Chen Zhou, chenzhou@whu.edu.cn

Received Date: 2022-05-30
Web Publishing Date: 2022-09-02

In this study, we investigate the generation of parametric decay instability, Langmuir turbulence formation, and electron acceleration in ionospheric heating via a two-fluid model using the Fokker–Planck equation and Vlasov–Poisson system simulations. The simulation results of both the magnetofluid model and the kinetic model demonstrate the dynamics of electron acceleration. Further, the results of the Vlasov–Poisson simulations suggest the formation of electron holes in phase space at the same spatial scale as the Langmuir wave, which are shown to be related to electron acceleration. In addition, electron acceleration is enhanced through the extension of the wavenumber spectrum caused by strong Langmuir turbulence, leading to more electron holes in phase space.

Key words: electron acceleration, Langmuir turbulence, electron holes, parametric decay instability

Baumjohann, W., and Treumann, R. A. (2012). Basic Space Plasma Physics. London: Imperial College Press.

Bryers, C. J., Kosch, M. J., Senior, A., Rietveld, M. T., and Yeoman, T. K. (2013). The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT. J. Geophys. Res.:Space Phys., 118(11), 7472–7481. https://doi.org/10.1002/2013JA019429

Carlson, H. C., Gordon, W. E., and Showen, R. L. (1972). High frequency induced enhancements of the incoherent scatter spectrum at Arecibo. J. Geophys. Res., 77(7), 1242–1250. https://doi.org/10.1029/JA077i007p01242

Chen, F. F. (1984). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.

Dang, T., Lei, J. H., Dou, X. K., and Wan, W. X. (2017). A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating. Earth Planet. Phys., 1, 44–52. https://doi.org/10.26464/epp2017006

Djuth, F. T., Bernhardt, P. A., Tepley, C. A., Gardner, J. A., Kelley, M. C., Broadfoot, A. L., Kagan, L. M., Sulzer, M. P., Elder, J. H., … Carlson, H. C. (1999). Large airglow enhancements produced via wave-plasma interactions in sporadic E. Geophys. Res. Lett., 26(11), 1557–1560. https://doi.org/10.1029/1999GL900296

Djuth, F. T., Pedersen, T. R., Gerken, E. A., Bernhardt, P. A., Selcher, C. A., Bristow W. A., and Kosch M. J. (2005). Ionospheric modification at twice the electron cyclotron frequency. Phys. Rev. Lett., 94(12), 125001. https://doi.org/10.1103/PhysRevLett.94.125001

Doolen, G. D., DuBois, D. F., and Rose, H. A. (1985). Nucleation of cavitons in strong Langmuir turbulence. Phys. Rev. Lett., 54(8), 804–807. https://doi.org/10.1103/PhysRevLett.54.804

DuBois, D. F., Rose, H. A., and Russell, D. (1988). Power spectra of fluctuations in strong Langmuir turbulence. Phys. Rev. Lett., 61(19), 2209–2212. https://doi.org/10.1103/PhysRevLett.61.2209

Eliasson, B. (2008). Full-scale simulation study of the generation of topside ionospheric turbulence using a generalized Zakharov model. Geophys. Res. Lett., 35(11), L11104. https://doi.org/10.1029/2008GL033866

Eliasson, B., Shao, X., Milikh, G., Mishin, E. V., and Papadopoulos, K. (2012). Numerical modeling of artificial ionospheric layers driven by high-power HF heating. J. Geophys. Res.:Space Phys., 117(A10), A10321. https://doi.org/10.1029/2012JA018105

Eliasson, B., and Shukla, P. K. (2004). Trapping of Langmuir waves in ion holes. Phys. Scr., 2004(T107), 192. https://doi.org/10.1238/Physica.Topical.107a00192

Eliasson, B., and Shukla, P. K. (2006). Formation and dynamics of coherent structures involving phase-space vortices in plasma. Phys. Rep., 422(6), 225–290. https://doi.org/10.1016/j.physrep.2005.10.003

Eliasson, B., and Stenflo, L. (2008). Full-scale simulation study of the initial stage of ionospheric turbulence. J. Geophys. Res.:Space Phys., 113(A2), A02305. https://doi.org/10.1029/2007JA012837

Fejer, J. A. (1979). Ionospheric modification and parametric instabilities. Rev. Geophys., 17(1), 135–153. https://doi.org/10.1029/RG017i001p00135

Feng, T., Zhou, C., Wang, X., Liu, M. R., and Zhao, Z. Y. (2020). Evidence of X-mode heating suppressing O-mode heating. Earth Planet. Phys., 4(6), 588–597. https://doi.org/10.26464/epp2020068

Hanssen, A., Mjølhus, E., DuBois, D. F., and Rose, H. A. (1992). Numerical test of the weak turbulence approximation to ionospheric Langmuir turbulence. J. Geophys. Res.:Space Phys., 97(A8), 12073–12091. https://doi.org/10.1029/92JA00874

Isham, B., La Hoz, C., Rietveld, M. T., Hagfors, T., and Leyser, T. B. (1999). Cavitating Langmuir turbulence observed during high-latitude ionospheric wave interaction experiments. Phys. Rev. Lett., 83(13), 2576–2579. https://doi.org/10.1103/PhysRevLett.83.2576

Mishin, E., Watkins, B., Lehtinen, N., Eliasson, B., Pedersen, T., and Grach, S. (2016). Artificial ionospheric layers driven by high-frequency radiowaves: an assessment. J. Geophys. Res.:Space Phys., 121(4), 3497–3524. https://doi.org/10.1002/2015JA021823

Najmi, A., Eliasson, B., Shao, X., Milikh, G., Sharma, A. S., and Papadopoulos, K. (2017). Vlasov simulations of electron acceleration by radio frequency heating near the upper hybrid layer. Phys. Plasmas, 24(10), 102904. https://doi.org/10.1063/1.4999768

Perkins, F. W., Oberman, C., and Valeo, E. J. (1974). Parametric instabilities and ionospheric modification. J. Geophys. Res., 79(10), 1478–1496. https://doi.org/10.1029/JA079i010p01478

Robinson, T. R. (1989). The heating of the high lattitude ionosphere by high power radio waves. Phys. Rep., 179(2–3), 79–209.

Sergeev, E., Grach, S., Shindin, A., Mishin, E., Bernhardt, P., Briczinski, S., Isham, B., Broughton, M., LaBelle, J., and Watkins, B. (2013). Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett., 110(6), 065002. https://doi.org/10.1103/PhysRevLett.110.065002

Thidé, B., Kopka, H., and Stubbe, P. (1982). Observations of stimulated scattering of a strong high-frequency radio wave in the ionosphere. Phys. Rev. Lett., 49(21), 1561–1564. https://doi.org/10.1103/PhysRevLett.49.1561

Wang, X., Zhou, C., Xu, T., Honary, F., Rietveld, M., and Frolov, V. (2019). Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association. Earth Planet. Phys., 3(5), 391–399. https://doi.org/10.26464/epp2019042

Weinstock, J. (1975). Theory of enhanced airglow during ionospheric modifications. J. Geophys. Res., 80(31), 4331–4345. https://doi.org/10.1029/JA080i031p04331

Weinstock, J., and Bezzerides, B. (1974). Theory of electron acceleration during parametric instabilities. Phys. Rev. Lett., 32(14), 754–758. https://doi.org/10.1103/PhysRevLett.32.754

[1]

MoRan Liu, Chen Zhou, Ting Feng, Xiang Wang, ZhengYu Zhao, 2022: Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating, Earth and Planetary Physics, 6, 474-486. doi: 10.26464/epp2022043

[2]

Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics, 4, 588-597. doi: 10.26464/epp2020068

[3]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[4]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics, 6, 465-473. doi: 10.26464/epp2022041

[5]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[6]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[7]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[8]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[9]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[10]

Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052

[11]

YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021

[12]

QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036

[13]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[14]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[15]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[16]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[17]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[18]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[19]

ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037

[20]

ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Electron acceleration by Langmuir turbulence in ionospheric heating

MoRan Liu, Chen Zhou, Ting Feng