Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liao, B. B., Chen, X. D., Xu, J. Q., Zhou, J. C., and Sun, H. P. (2022). Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method. Earth Planet. Phys., 6(3), 241–247. http://doi.org/10.26464/epp2022025

2022, 6(3): 241-247. doi: 10.26464/epp2022025

SOLID EARTH: GEODESY AND GRAVITY

Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method

1. 

State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

2. 

University of the Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: XiaoDong Chen, chenxd@apm.ac.cn

Received Date: 2022-01-06
Web Publishing Date: 2022-03-28

The tidal Love numbers of the Moon are a set of nondimensional parameters that describe the deformation responses of the Moon to the tidal forces of external celestial bodies. They play an important role in the theoretical calculation of the Moon’s tidal deformation and the inversion of its internal structure. In this study, we introduce the basic theory for the theoretical calculation of the tidal Love numbers and propose a new method of solving the tidal Love numbers: the spectral element method. Moreover, we explain the mathematical theory and advantages of this method. On the basis of this new method, using 10 published lunar internal structure reference models, the lunar surface and lunar internal tidal Love numbers were calculated, and the influence of different lunar models on the calculated Love numbers was analyzed. Results of the calculation showed that the difference in the second-degree lunar surface Love numbers among different lunar models was within 8.5%, the influence on the maximum vertical displacement on the lunar surface could reach ±8.5 mm, and the influence on the maximum gravity change could reach ±6 μGal. Regarding the influence on the Love numbers inside the Moon, different lunar models had a greater impact on the Love numbers h2 and l2 than on k2 in the lower lunar mantle and core.

Key words: lunar tidal Love numbers; spectral element method; solid lunar tides; lunar internal structure reference models; lunar tidal deformation theory

Alterman, Z., Jarosch, H., and Pekeris, C. L. (1959). Oscillations of the earth. Proc. Roy. Soc. Lond. Ser. A, Math. Phys. Sci., 252(1268), 80–95.222

Dahlen, F. A., and Tromp, J. (1998). Theoretical Global Seismology. Princeton: Princeton University Press.222

Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D., and Spohn, T. (2006). A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet Inter., 159, 140–166. https://doi.org/10.1016/j.pepi.2006.05.009

Gautschi, W. (2012). Numerical Analysis. Basel: Birkhauser.222

Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P. (2011). Very preliminary reference moon model. Phys. Earth Planet Inter., 188, 96–113. https://doi.org/10.1016/j.pepi.2011.06.015

Garcia, R. F., Khan, A., Drilleau, M., Margerin, L., Kawamura, T., Sun, D. Y., Wieczorek, M. A., Rivoldini, A., Nunn, C., … Zhu, P. M. (2019). Lunar seismology: an update on interior structure modes. Space Sci. Rev., 215(8), 50. https://doi.org/10.1007/s11214-019-0613-y

Komatitsch, D., and Tromp, J. (1999). Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int., 139(3), 806–822. https://doi.org/10.1046/j.1365-246x.1999.00967.x

Liao, B. B., Xu, J. Q., Sun, H. P., and Zhou, J. C. (2019). Spectral element method to load deformation in a SNREI Earth. Chin. J. Geophys. (in Chinese), 62(7), 2382–2393. https://doi.org/10.6038/cjg2019M0043

Love, A. E. H. (1911). Some Problems of Geodynamics. Cambridge: Cambridge University Press.222

Martinec, Z. (2000). Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J. Int., 142(1), 117–141. https://doi.org/10.1046/j.1365-246x.2000.00138.x

Matsumoto, K., Yamada, R., Kikuchi, F., Kamata, S., Ishihara, Y., Iwata, T., Hanada, H., and Sasaki, S. (2015). Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett., 42(18), 7351–7358. https://doi.org/10.1002/2015GL065335

Nakamura, Y., Duennebier, F. K., Latheam, G. V., and Dorman, H. J. (1976). Structure of the lunar mantle. J. Geophys. Res., 81(26), 4818–4824. https://doi.org/10.1029/JB081i026p04818

Park, R. S., Folkner, W. M., Williams, J. G., and Boggs, D. H. (2021). The JPL planetary and lunar ephemerides DE440 and DE441. Astronom. J., 161(3), 105. https://doi.org/10.3847/1538-3881/abd414

Plag, H. P., and Jüttner, H. U. (1995). Rayleigh–Taylor instabilities of a self-gravitating Earth. J. Geodynam., 20(3), 267–288. https://doi.org/10.1016/0264-3707(95)00008-W

Quarteroni, A. (2009). Numerical Models for Differential Problems. Milan: Springer-Verlag.222

Shida, T. (1912). On the body tides of the Earth, a proposal for the international Geodetic Association. Proc. Tokyo Math.-Phys. Soc. 2nd Series, 6(16), 242–258. https://doi.org/10.11429/ptmps1907.6.16_242

Simon, J. L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou G., and Laskar, J. (1994). Numerical expressions for precession formulae and mean elements for the Moon and planets. Astron. Astrophys., 282(2), 663–683.

Sun, W. J., Zhao, L., Wei, Y., and Fu, L. Y. (2019). Detection of seismic events on Mars: a lunar perspective. Earth Planet. Phys., 3(4), 290–297. https://doi.org/10.26464/epp2019030

Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q., and Lognonné, P. (2011). Seismic detection of the lunar core. Science, 331, 309–312. https://doi.org/10.1126/science.1199375

Williams, J. G., Konopliv, A. S., Boggs, D. H., Park, R. S., Yuan, D. N., Lemoine, F. G., Goossens, S., Mazarico, E., Nimmo, F., … Zuber, M. T. (2014). Lunar interior properties from the GRAIL mission. J. Geophys. Res.:Planets, 119(7), 1546–1578. https://doi.org/10.1002/2013JE004559

Zuber, M. T., Smith, D. E., Lehman, D. H., Hoffman, T. L., Asmar, S. W., and Watkins, M. M. (2013). Gravity Recovery and Interior Laboratory (GRAIL): mapping the lunar interior from crust to core. Space Sci. Rev., 178(1), 3–24. https://doi.org/10.1007/s11213-012-9952-7

[1]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[2]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[3]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[4]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[5]

Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu, 2022: Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA, Earth and Planetary Physics. doi: 10.26464/epp2022030

[6]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049

[7]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[8]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[9]

QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu, 2022: Seismic attenuation compensation with spectral-shaping regularization, Earth and Planetary Physics, 6, 259-274. doi: 10.26464/epp2022024

[10]

LongHui Yuan, YuFeng Lin, Chris A. Jones, 2021: Influence of reference states on Jupiter’s dynamo simulations, Earth and Planetary Physics, 5, 305-313. doi: 10.26464/epp2021041

[11]

Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

[12]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040

[13]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[14]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[15]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[16]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[17]

Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010

[18]

SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056

[19]

XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017

[20]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method

BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun