Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, X. Z., Rong, Z. J., Gao, J. W., Wei, Y., Shi, Z., Yu, T., and Wan, W. X. (2020). A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover. Earth Planet. Phys., 4(4), 1–9doi: 10.26464/epp2020045

doi: 10.26464/epp2020045

PLANETARY SCIENCES

A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

China University of Geosciences, Wuhan 430074, China

Corresponding author: ZhaoJin Rong, rongzhaojin@mail.iggcas.ac.cn

Received Date: 2020-03-03
Web Publishing Date: 2020-04-01

Unlike Earth, Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field. In 2021, the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic field along a moving path within the possible landing region of 20°W–50°W, 20°N–30°N. One scientific target of the Rover is to monitor the variation in surface remnant magnetic fields and reveal the source of the ionospheric current. An accurate local crustal field model is thus considered necessary as a field reference. Here we establish a local crust field model for the candidate landing site based on the joint magnetic field data set from Mars Global Explorer (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) data combined. The model is composed of 1,296 dipoles, which are set on three layers but at different buried depths. The application of the dipole model to the joint data set allowed us to calculate the optimal parameters of their dipoles. The calculated results demonstrate that our model has less fitting error than two other state-of-the art global crustal field models, which would indicate a more reasonable assessment of the surface crustal field from our model.

Key words: Mars, remnant crustal field, crustal field model, dipole sources, Chinese Mars mission

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Mitchell, D., … Ness, N. F. (1998). Magnetic field and plasma observations at mars: initial results of the mars global surveyor mission. Science, 279(5357), 1676–1680. https://doi.org/10.1126/science.279.5357.1676

Albee, A. L., Arvidson, R. E., Palluconi, F., and Thorpe, T. (2001). Overview of the Mars Global Surveyor mission. J. Geophys. Res. Planets, 106(E10), 23291–23316. https://doi.org/10.1029/2000JE001306

Arkani-Hamed, J. (2005). Magnetic crust of Mars. J. Geophys. Res. Planets, 110(E8), E08005. https://doi.org/10.1029/2004JE002397

Arkani-Hamed, J. (2007). Magnetization of Martian lower crust: Revisited. J. Geophys. Res. Planets, 112(E5), E05008. https://doi.org/10.1029/2006JE002824

Cain, J. C., Ferguson, B. B., and Mozzoni, D. (2003). An n = 90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res. Planets, 108(E2), 5008. https://doi.org/10.1029/2000JE001487

Chiao, L. Y., Lin, J. R., and Gung, Y. C. (2006). Crustal magnetization equivalent source model of Mars constructed from a hierarchical multiresolution inversion of the Mars Global Surveyor data. J. Geophys. Res. Planets, 111(E12), E12010. https://doi.org/10.1029/2006JE002725

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Fan, K., Fraenz, M., Wei, Y., Han, Q. Q., Dubinin, E., Cui, J., Chai, L. H., Rong, Z. J., Zhong, J., … Connerney, J. E. P. (2019). Reduced atmospheric ion escape above Martian crustal magnetic fields. Geophys. Res. Lett., 46(21), 11764–11772. https://doi.org/10.1029/2019GL084729

Geng, Y., Zhou, J. S., Li, S., Fu, Z. L., Meng, L. Z., Liu, J. J., and Wang, H. P. (2018). A brief introduction of the first mars exploration mission in China. J. Deep Space Explor. (in Chinese) , 5(5), 399–405. https://doi.org/10.15982/j.issn.2095-7777.2018.05.001

Han, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., … Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophys. Res. Lett., 41(23), 8221–8227. https://doi.org/10.1002/2014GL062287

Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res.: Space Phys., 124(10), 8015–8022. https://doi.org/10.1029/2019JA026739

Hestenes, M. R., and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436. https://doi.org/10.6028/jres.049.044

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., … Zurek, R. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev., 195(1), 3–48. https://doi.org/10.1007/s11214-015-0139-x

Johnson, C. L., Mittelholz, A., Langlais, B., Lognonné, P., Pike, W. T., Joy, S. P., Russell, C. T., Yu, Y. N., Fillingim, M., … Banerdt, W. B. (2019). First results from the insight fluxgate magnetometer: Constraints on Mars’ crustal magnetic field at the INSIGHT landing site. In 50th Lunar and Planetary Science Conference 2019. The Woodlands, Texas: LPI.222

Johnson, C. L., Mittelholz, A., Langlais, B., Russell, C. T., Ansan, V., Banfield, D., Chi, P. J., Fillingim, M. O., Forget, F., … Banerdt, W. B. (2020). Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nat. Geosci., 13(3), 199–204. https://doi.org/10.1038/s41561-020-0537-x

Langlais, B., Purucker, M. E., and Mandea, M. (2004). Crustal magnetic field of Mars. J. Geophys. Res. Planets, 109(E2), E02008. https://doi.org/10.1029/2003JE002048

Langlais, B., Thébault, E., Houliez, A., Purucker, M. E., and Lillis, R. J. (2019). A new model of the crustal magnetic field of Mars using MGS and MAVEN. J. Geophys. Res. Planets, 124(6), 1542–1569. https://doi.org/10.1029/2018JE005854

Li, C. L., Liu, J. J., Geng, Y., Cao, J. B., Zhang, T. L., Fang, G. Y., Yang, J. F., Shu, R., Zou, Y. L.,.. Ouyang, Z. Y. (2018). Scientific objectives and payload configuration of China’s first Mars exploration mission. J. Deep Space Explor. (in Chinese) , 5(5), 406–413. https://doi.org/10.15982/j.issn.2095-7777.2018.05.002

Lillis, R. J., Frey, H. V., Manga, M., Mitchell, D. L., Lin, R. P., Acuña, M. H., and Bougher, S. W. (2008). An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the Martian dynamo. Icarus, 194(2), 575–596. https://doi.org/10.1016/j.icarus.2007.09.032

Ma, Y. J., Fang, X. H., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., Brain, D. A., and Dong, C. F. (2014). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett., 41(19), 6563–6569. https://doi.org/10.1002/2014GL060785

Mayhew, M. A. (1979). Inversion of satellite magnetic anomaly data. J. Geophys., 45(2), 119–128.

Mittelholz, A., Johnson, C. L., and Morschhauser, A. (2018a). A new magnetic field activity proxy for Mars from MAVEN data. Geophys. Res. Lett., 45(12), 5899–5907. https://doi.org/10.1029/2018GL078425

Mittelholz, A., Morschhauser, A., Johnson, C. L., Langlais, B., Lillis, R. J., Vervelidou, F., and Weiss, B. P. (2018b). The Mars 2020 candidate landing sites: A magnetic field perspective. Earth Space Sci., 5(9), 410–424. https://doi.org/10.1029/2018EA000420

Moore, K. M., and Bloxham, J. (2017). The construction of sparse models of Mars's crustal magnetic field. J. Geophys. Res. Planets, 122(7), 1443–1457. https://doi.org/10.1002/2016JE005238

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res. Planets, 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555

Mustard, J., Adler, M., Allwood, A., Bass, D., Beaty, D., Bell, J., et al. (2013). Report of the Mars 2020 science definition team. Mars Exploration Program Analysis Group (MEPAG), Cl, 155-205. http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Appendix.pdf222

Němec, F., Morgan, D. D., Gurnett, D. A., and Brain, D. A. (2011). Areas of enhanced ionization in the deep nightside ionosphere of Mars. J. Geophys. Res. Planets, 116(E6), E06006. https://doi.org/10.1029/2011JE003804

Oliveira, J. S., Langlais, B., Pais, M. A., and Amit, H. (2015). A modified Equivalent Source Dipole method to model partially distributed magnetic field measurements, with application to Mercury. J. Geophys. Res. Planets, 120(6), 1075–1094. https://doi.org/10.1002/2014JE004734

Plattner, A., and Simons, F. J. (2015). High-resolution local magnetic field models for the Martian South Pole from Mars Global Surveyor data. J. Geophys. Res. Planets, 120(9), 1543–1566. https://doi.org/10.1002/2015JE004869

Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuña, M. (2000). An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett., 27(16), 2449–2452. https://doi.org/10.1029/2000GL000072

Purucker, M. E., Sabaka, T. J., and Langel, R. A. (1996). Conjugate gradient analysis: A new tool for studying satellite magnetic data sets. Geophys. Res. Lett., 23(5), 507–510. https://doi.org/10.1029/96gl00388

Purucker, M. E. (2008). A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus, 197(1), 19–23. https://doi.org/10.1016/j.icarus.2008.03.016

Russell, C. T., Joy, S., Yu, Y., Rowe, K., Johnson, C., Mittelholz, A., Langlais, B., Chi, P. J., Fillingim, M., …Banerdt, B. (2019). The insight magnetic field measurements: preliminary results. In 50th Lunar and Planetary Science Conference 2019. The Woodlands, Texas: LPI.222

Smith, D. E., and Zuber, M. T. (2002). The crustal thickness of Mars: Accuracy and resolution. In 33rd Annual Lunar and Planetary Science Conference. Houston, Texas: NASA.222

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci., 54(4), 357–369. https://doi.org/10.1016/j.pss.2006.01.003

Wei, Y., Yao, Z. H., and Wan, W. X. (2018). China’s roadmap for planetary exploration. Nat. Astron., 2(5), 346–348. https://doi.org/10.1038/s41550-018-0456-6

Whaler, K. A., and Purucker, M. E. (2005). A spatially continuous magnetization model for Mars. J. Geophys. Res. Planets, 110(E9), E09001. https://doi.org/10.1029/2004JE002393

Zhao, L., Du, A. M., Qiao, D. H., Sun, S. Q., Zhang, Y., Ou, J. M., Guo, Z. F., Li, Z., Feng, X., … Li, F. (2018). The ROVER fluxgate magnetometer. J. Deep Space Explor. (in Chinese) , 5(5), 472–477. https://doi.org/10.15982/j.issn.2095-7777.2018.05.010

Zuber, M. T. (2001). The crust and mantle of Mars. Nature, 412(6843), 220–227. https://doi.org/10.1038/35084163

[1]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[2]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[3]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[4]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[5]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[6]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[7]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics. doi: 10.26464/epp2020035

[8]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[9]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[10]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[11]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[12]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[13]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[14]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[15]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062

[16]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics. doi: 10.26464/epp2020038

[17]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[18]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[19]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[20]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan