Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Gu, S. Y., Hou, X., Qi, J. H., TengChen K. M., and Dou, X. K. (2020). Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming. Earth Planet. Phys., 4(5), 472–478doi: 10.26464/epp2020046

2020, 4(5): 472-478. doi: 10.26464/epp2020046

ATMOSPHERIC PHYSICS

Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming

School of Electronic Information, Wuhan University, Wuhan 430072, China

Corresponding author: ShengYang Gu, gushengyang@whu.edu.cn

Received Date: 2020-04-13
Web Publishing Date: 2020-09-25

In this research, the roles of gravity waves and planetary waves in the change to middle atmospheric residual circulation during a sudden stratospheric warming period are differentiated and depicted separately by adopting the downward control principle. Our analysis shows clear anomalous poleward residual circulation patterns from the equator to high latitudes in the lower winter stratosphere. At the same time, upward mean flows are identified at high latitudes of the winter upper stratosphere and mesosphere, which turn equatorward in the mesosphere and reach as far as the tropical region, and consequently the extratropical region in the summer hemisphere. The downward control principle shows that anomalous mesospheric residual circulation patterns, including interhemispheric coupling, are solely caused by the change in gravity wave forcing resulting from the reversal of the winter stratospheric zonal wind. Nevertheless, both planetary waves and gravity waves are important to variations in the winter stratospheric circulation, but with opposite effects.

Key words: sudden stratospheric warming; residual circulation; gravity and planetary waves

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 490). San Diego: Academic Press.222

Chandran, A., Collins, R. L., and Harvey, V. L. (2014). Stratosphere-mesosphere coupling during stratospheric sudden warming events. Adv. Space Res., 53(9), 1265–1289. https://doi.org/10.1016/j.asr.2014.02.005

Fritts, D. C., and Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 3–1. https://doi.org/10.1029/2001RG000106

Funke, B., López-Puertas, M., Bermejo-Pantaleón, D., García-Comas, M., Stiller, G. P., von Clarmann, T., Kiefer, M., and Linden, A. (2010). Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys. Res. Lett., 37(13), L13803. https://doi.org/10.1029/2010gl043619

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., .. Zhao, B. (2017). The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1

Goncharenko, L. P., Chau, J. L., Liu, H. L., and Coster, A. J. (2010a). Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett., 37(10), L10101. https://doi.org/10.1029/2010gl043125

Goncharenko, L. P., Coster, A. J., Chau, J. L., and Valladares, C. E. (2010b). Impact of sudden stratospheric warmings on equatorial ionization anomaly. J. Geophys. Res. Space Phys., 115(A10), A00G07. https://doi.org/10.1029/2010ja015400

Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine, K. P. (1991). On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48(4), 651–678. https://doi.org/10.1175/1520-0469(1991)048<0651:Otcoed>2.0.Co;2

Karlsson, B., Körnich, H., and Gumbel, J. (2007). Evidence for interhemispheric stratosphere-mesosphere coupling derived from noctilucent cloud properties. Geophys. Res. Lett., 34(16), L16806. https://doi.org/10.1029/2007gl030282

Karlsson, B., McLandress, C., and Shepherd, T. G. (2009). Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model. J. Atmos. Sol.-Terr. Phys., 71(3-4), 518–530. https://doi.org/10.1016/j.jastp.2008.08.006

Karpechko, A. Y., and Manzini, E. (2012). Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res.: Atmos., 117(D5), D05133. https://doi.org/10.1029/2011JD017036

Körnich, H., and Becker, E. (2010). A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv. Space Res., 45(5), 661–668. https://doi.org/10.1016/j.asr.2009.11.001

Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel, O. K. (2012). The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM. J. Atmos. Sol.-Terr. Phys., 78-79, 84–98. https://doi.org/10.1016/j.jastp.2011.03.004

Liu, H. L., and Roble, R. G. (2002). A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J. Geophys. Res. Atmos., 107(D23), ACL 15-1–ACL 15-18. https://doi.org/10.1029/2001JD001533

Liu, H. L., Marsh, D. R., She, C. Y., Wu, Q., and Xu, J. (2009). Momentum balance and gravity wave forcing in the mesosphere and lower thermosphere. Geophys. Res. Lett., 36(7), L07805. https://doi.org/10.1029/2009gl037252

Lubis, S. W., Omrani, N. E., Matthes, K., and Wahl, S. (2016). Impact of the antarctic ozone hole on the vertical coupling of the stratosphere-mesosphere-lower thermosphere system. J. Atmos. Sci., 73(6), 2509–2528. https://doi.org/10.1175/Jas-D-15-0189.1

Nayak, C., and Yiğit, E. (2019). Variation of small-scale gravity wave activity in the ionosphere during the major sudden stratospheric warming event of 2009. J. Geophys. Res.: Space Phys., 124(1), 470–488. https://doi.org/10.1029/2018JA026048

Pedatella, N. M., Raeder, K., Anderson, J. L., and Liu, H. L. (2014). Ensemble data assimilation in the Whole Atmosphere Community Climate Model. J. Geophys. Res.: Atmos., 119(16), 9793–9809. https://doi.org/10.1002/2014JD021776

Yamashita, C., Liu, H. L., and Chu, X. Z. (2010). Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming. Geophys. Res. Lett., 37(9), L09803. https://doi.org/10.1029/2009GL042351

Yiğit, E., and Medvedev, A. S. (2012). Gravity waves in the thermosphere during a sudden stratospheric warming. Geophys. Res. Lett., 39(21), L21101. https://doi.org/10.1029/2012GL053812

Zülicke, C., and Becker, E. (2013). The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J. Geophys. Res.: Atmos., 118(5), 2255–2271. https://doi.org/10.1002/jgrd.50219

[1]

Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics, 4, 493-503. doi: 10.26464/epp2020044

[2]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[3]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047

[4]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[5]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[6]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[7]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[8]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[9]

Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046

[10]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[11]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[12]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[13]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics. doi: 10.26464/epp2020059

[14]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[15]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[16]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[17]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[18]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

[19]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[20]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou