Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Huang, Y. Y., Cui, J., Li, H. J., and Li, C. Y. (2022). Inter-annual variations of 6.5-day planetary waves and their relations with QBO. Earth Planet. Phys., 6(2), 135–148. http://doi.org/10.26464/epp2022005

doi: 10.26464/epp2022005

PLANETARY SCIENCES

Inter-annual variations of 6.5-day planetary waves and their relations with QBO

1. 

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2. 

State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100101, China

3. 

CAS Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

4. 

Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

5. 

School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

6. 

College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

7. 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: YingYing Huang, huangyy@bao.ac.cn

Received Date: 2021-07-19
Web Publishing Date: 2022-01-25

This paper studies inter-annual variations of 6.5-Day Waves (6.5DWs) observed at altitudes 20−110 km between 52°S−52°N latitudes during March 2002−January 2021, and how these variations were related to the equatorial stratospheric Quasi-Biennial Oscillation (QBO). Temperature amplitudes of the 6.5DWs are calculated based on SABER/TIMED observations. QBO zonal winds are obtained from an ERA5 reanalysis dataset. QBO phases are derived using an Empirical Orthogonal Functions (EOF) method. Wavelet analysis of the observed 6.5DW variations demonstrates obvious spectral maximums around 28−38 months at 32°N−52°N, and around 26−30 months at 32°S−52°S. In the Northern Hemisphere, peak periods lengthened poleward; in the Southern Hemisphere, however, they were unchanged with latitude. Residual 6.5DWs amplitudes have been determined by removing composite amplitudes from 6.5DWs amplitudes. Comparisons between QBO and monthly maximum residual 6.5DWs amplitudes ($ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $) show clear correlations between the QBO and 6.5DWs in both hemispheres, but the observed relationship is stronger in the NH. When $ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $ were large in the NH, the mean QBO profile was easterly at all levels from 70 to 5 hPa; when the $ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $ were weak, the mean QBO wind was weak westerly below 30 hPa. Linear Pearson correlation coefficients between QBO phases and $ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $ show large positive values at 60−110 km between 20°N−52°N in April and around 64 km at 24°S in February, and large negative values from 80 to 110 km between 20°N−50°N in August and at 96−106 km between 20°S−44°S in February. These results indicate quantitative correlations between QBO and 6.5DWs and provide credible evidences for further studies of QBO modulations on long-term variations of 6.5DWs.

Key words: planetary wave, quasi-biennial osillations, wave-flow interactions, satellite observation

Anstey, J. A., Shepherd, T. G., and Scinocca, J. F. (2010). Influence of the quasi-biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J. Atmos. Sci., 67(5), 1402–1419. https://doi.org/10.1175/2009jas3292.1

Anstey, J. A., and Shepherd, T. G. (2014). High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140(678), 1–21. https://doi.org/10.1002/qj.2132

Bai, X. Y., Huang, K. M., Zhang, S. D., Huang, C. M. and Gong, Y. (2021). Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis. Earth Planet. Phys., 5(3), 280–289. https://doi.org/10.26464/epp2021028

Balachandran, N. K., and Rind, D. (1995). Modeling the effects of UV variability and the QBO on the troposphere–stratosphere system. Part I: the middle atmosphere. J. Climate, 8(8), 2058–2079. https://doi.org/10.1175/1520-0442(1995)008<2058:MTEOUV>2.0.CO;2

Baldwin, M. P., and Dunkerton, T. J. (1989). Observations and statistical simulations of a proposed solar cycle/QBO/weather relationship. Geophys. Res. Lett., 16(8), 863–866. https://doi.org/10.1029/GL016i008p00863

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., … Takahashi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39(2), 179–229. https://doi.org/10.1029/1999RG000073

Belova, A., Kirkwood, S., Murtagh, D., Mitchell, N., Singer, W., and Hocking, W. (2008). Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007. Ann. Geophys., 26(11), 3557–3570. https://doi.org/10.5194/angeo-26-3557-2008

Boville, B. A. (1984). The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41(7), 1132–1142. https://doi.org/10.1175/1520-0469(1984)041<1132:TIOTPN>2.0.CO;2

Day, K. A., Taylor, M. J., and Mitchell, N. J. (2012). Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42°N, 111°W). Atmos. Chem. Phys., 12(3), 1571–1585. https://doi.org/10.5194/acp-12-1571-2012

de Wit, R. J., Janches, D., Fritts, D. C., and Hibbins, R. E. (2016). QBO modulation of the mesopause gravity wave momentum flux over Tierra del Fuego. Geophys. Res. Lett., 43(8), 4049–4055. https://doi.org/10.1002/2016gl068599

Fraedrich, K., Pawson, S., and Wang, R. S. (1993). An EOF analysis of the vertical-time delay structure of the quasi-biennial oscillation. J. Atmos. Sci., 50(20), 3357–3365. https://doi.org/10.1175/1520-0469(1993)050<3357:AEAOTV>2.0.CO;2

Gan, Q., Yue, J., Chang, L. C., Wang, W. B., Zhang, S. D., and Du, J. (2015). Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere. Ann. Geophys., 33(7), 913–922. https://doi.org/10.5194/angeo-33-913-2015

García-Comas, M., López-Puertas, M., Marshall, B. T., Wintersteiner, P. P., Funke, B., Bermejo-Pantaleón, D., Mertens, C. J., Remsberg, E. E., Gordley, L. L., … Russell III, J. M. (2008). Errors in sounding of the atmosphere using broadband emission radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters. J. Geophys. Res.:Atmos., 113(D24), D24106. https://doi.org/10.1029/2008jd010105

Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W. (2012). Does the holton–tan mechanism explain how the quasi-biennial oscillation modulates the arctic polar vortex?. J. Atmos. Sci., 69(5), 1713–1733. https://doi.org/10.1175/jas-d-11-0209.1

Gray, L. J., Phipps, S. J., Dunkerton, T. J., Baldwin, M. P., Drysdale, E. F., and Allen, M. R. (2001). A data study of the influence of the equatorial upper stratosphere on northern-hemisphere stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 127(576), 1985–2003. https://doi.org/10.1002/qj.49712757607

Gu, S. Y., Ruan, H. B., Yang, C. Y., Gan, Q., Dou, X. K., and Wang, N. N. (2018). The morphology of the 6-day wave in both the neutral atmosphere and f region ionosphere under solar minimum conditions. J. Geophys. Res.:Space Phys., 123(5), 4232–4240. https://doi.org/10.1029/2018ja025302

Gu, S. Y., Dou, X. K., Yang, C. Y., Jia, M. J., Huang, K. M., Huang, C. M., and Zhang, S. D. (2019). Climatology and anomaly of the quasi-two-day wave behaviors during 2003–2018 austral summer periods. J. Geophys. Res.:Space Phys., 124(1), 544–556. https://doi.org/10.1029/2018ja026047

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., …Thépaut, J. N. (2020). The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Holton, J. R., and Tan, H. C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37(10), 2200–2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2

Huang, Y. Y., Zhang, S. D., Yi, F., Huang, C. M., Huang, K. M., Gan, Q., and Gong, Y. (2013). Global climatological variability of quasi-two-day waves revealed by TIMED/SABER observations. Ann. Geophys., 31(6), 1061–1075. https://doi.org/10.5194/angeo-31-1061-2013

Huang, Y. Y., Zhang, S. D., Li, C. Y., Li, H. J., Huang, K. M., and Huang, C. M. (2017). Annual and interannual variations in global 6.5DWs from 20 to 110 km during 2002-2016 observed by TIMED/SABER. J. Geophys. Res. :Space Phys., 122(8), 8985–9002. https://doi.org/10.1002/2017ja023886

Jiang, G., Xu, J. Y., Xiong, J., Ma, R., Ning, B., Murayama, Y., Thorsen, D., Gurubaran, S., Vincent, R. A., and Reid, I. (2008a). A case study of the mesospheric 6.5-day wave observed by radar systems. J. Geophys. Res.:Atmos., 113(D16), D16111. https://doi.org/10.1029/2008JD009907

Jiang, G., Xiong, J., Wan, W., Ning, B., and Liu, L. (2008b). Observation of 6.5-day waves in the MLT region over Wuhan. J. Atmos. Sol. Terr. Phys., 70(1), 41–48. https://doi.org/10.1016/j.jastp.2007.09.008

John, S. R., and Kumar, K. K. (2012). TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate Dyn., 39(6), 1489–1505. https://doi.org/10.1007/s00382-012-1329-9

Kim, Y. H., and Chun, H. Y. (2015). Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res.:Atmos., 120(3), 1065–1090. https://doi.org/10.1002/2014jd022174

Kishore, P., Namboothiri, S. P., Igarashi, K., Gurubaran, S., Sridharan, S., Rajaram, R., and Ratnam, M. V. (2004). MF radar observations of 6.5-day wave in the equatorial mesosphere and lower thermosphere. J. Atmos. Sol. Terr. Phys., 66(6-9), 507–515. https://doi.org/10.1016/j.jastp.2004.01.026

Laskar, F. I., Chau, J. L., Stober, G., Hoffmann, P., Hall, C. M., and Tsutsumi, M. (2016). Quasi-Biennial Oscillation Modulation of the Middle- and High-Latitude Mesospheric Semidiurnal Tides During August-September. J. Geophys. Res. :Space Phys., 121(5), 4869–4879. https://doi.org/10.1002/2015ja022065

Li, T., She, C. Y., Palo, S. E., Wu, Q., Liu, H. L., and Salby, M. L. (2008). Coordinated lidar and TIMED observations of the quasi-two-day wave during August 2002–2004 and possible quasi-biennial oscillation influence. Adv. Space Res., 41(9), 1463–1471. https://doi.org/10.1016/j.asr.2007.03.052

Li, X., Wan, W. X., Ren, Z. P., Liu, L. B., and Ning, B. Q. (2015). The variability of nonmigrating tides detected from TIMED/SABER observations. J. Geophys. Res. :Space Phys., 120(12), 10793–10808. https://doi.org/10.1002/2015ja021577

Li, X., Wan, W. X., Cao, J. B., and Ren, Z. P. (2020). Wavenumber-4 spectral component extracted from TIMED/SABER observations. Earth Planet. Phys., 4(5), 436–448. https://doi.org/10.26464/epp2020040

Li, Y., Sheng Z., and Jing, J. R. (2019). Feature analysis of stratospheric wind and temperature fields over the Antigua site rocket data. Earth Planet. Phys., 3(5), 414-424. https://doi.org/10.26464/epp2019040

Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H. (2005). The 6.5-day oscillations observed in meteor winds over Cachoeira Paulista (22.7°S). Adv. Space Res., 36(11), 2212–2217. https://doi.org/10.1016/j.asr.2005.06.005

Lin, P., Held, I., and Ming, Y. (2019). The early development of the 2015/16 quasi-biennial oscillation disruption. J. Atmos. Sci., 76(3), 821–836. https://doi.org/10.1175/jas-d-18-0292.1

Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M., and Yee, J. H. (2004). The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. J. Geophys. Res. :Atmos., 109(D21), D21112. https://doi.org/10.1029/2004jd004795

Liu, M. H., Xu, J. Y., Liu, H. L., and Liu, X. (2016). Possible modulation of migrating diurnal tide by latitudinal gradient of zonal wind observed by SABER/TIMED. Sci. China Earth Sci., 59(2), 408–417. https://doi.org/10.1007/s11430-015-5185-4

Liu, X., Xu, J. Y., and Yue, J. (2020). Global static stability and its relation to gravity waves in the middle atmosphere. Earth Planet. Phys., 4(5), 504–512. https://doi.org/10.26464/epp2020047

Merkel, A. W., Thomas, G. E., Palo, S. E., and Bailey, S. M. (2003). Observations of the 5-day planetary wave in PMC measurements from the Student Nitric Oxide Explorer Satellite. Geophys. Res. Lett., 30(4), 1196. https://doi.org/10.1029/2002gl016524

Merzlyakov, E. G., Solovjova, T. V., and Yudakov, A. A. (2013). The interannual variability of a 5–7 day wave in the middle atmosphere in autumn from ERA product data, Aura MLS data, and meteor wind data. J. Atmos. Sol. Terr. Phys., 102, 281–289. https://doi.org/10.1016/j.jastp.2013.06.008

Merzlyakov, E. G., Jacobi, C., and Solovjova, T. V. (2015). The year-to-year variability of the autumn transition dates in the mesosphere/lower thermosphere wind regime and its coupling with the dynamics of the stratosphere and troposphere. J. Atmos. Sol. Terr. Phys., 122, 9–17. https://doi.org/10.1016/j.jastp.2014.11.002

Meyer, C. K., and Forbes, J. M. (1997). A 6.5-day westward propagating planetary wave: origin and characteristics. J. Geophys. Res. :Atmos., 102(D22), 26173–26178. https://doi.org/10.1029/97jd01464

Miyoshi, Y., and Hirooka, T. (2003). Quasi-biennial variation of the 5-day wave in the stratosphere. J. Geophys. Res.:Atmos., 108(D19), 4620. https://doi.org/10.1029/2002jd003145

Newman, P. A., Coy, L., Pawson, S., and Lait, L. R. (2016). The anomalous change in the QBO in 2015-2016. Geophys. Res. Lett., 43(16), 8791–8797. https://doi.org/10.1002/2016gl070373

Pancheva, D., Mukhtarov, P., Andonov, B., and Forbes, J. M. (2010). Global distribution and climatological features of the 5–6-day planetary waves seen in the SABER/TIMED temperatures. (20022007). J. Atmos. Sol. Terr. Phys., 72(1), 26–37. https://doi.org/10.1016/j.jastp.2009.10.005

Pancheva, D., Mukhtarov, P., and Siskind, D. E. (2018). Climatology of the quasi-2-day waves observed in the MLS/Aura measurements (2005–2014). J. Atmos. Sol. Terr. Phys., 171, 210–224. https://doi.org/10.1016/j.jastp.2017.05.002

Qin, Y. S., Gu, S. Y., Teng, C. K. M., Dou, X. K., Yu, Y., and Li, N. (2021). Comprehensive study of the climatology of the quasi-6-day wave in the MLT region based on aura/MLS observations and SD-WACCM-X simulations. J. Geophys. Res.:Space Phys., 126(1), e2020JA028454. https://doi.org/10.1029/2020ja028454

Rao, J., Yu, Y. Y., Guo, D., Shi, C. H., Chen, D., and Hu, D. Z. (2019). Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth Planet. Phys., 3(2), 166–181. https://doi.org/10.26464/epp2019012

Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G. (1961). Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66(3), 813–818. https://doi.org/10.1029/JZ066i003p00813

Rezac, L. , Kutepov, A. , Russell III, J. M. , Feofilov, A. G. , Yue, J. , and Goldberg, R. A. (2015). Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements. J. Atmos. Sol. Terr. Phys. , 130-131, 23-42.222

Riggin, D. M., Liu, H. L., Lieberman, R. S., Roble, R. G., Russell III, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., … Vincent, R. A. (2006). Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Sol. Terr. Phys., 68(3-5), 323–339. https://doi.org/10.1016/j.jastp.2005.05.010

Shuai, J., Zhang, S. D., Huang, C. M., Yi, F., Huang, K. M., Gan, Q., and Gong, Y. (2014). Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations. Sci. China Technol. Sci., 57(5), 998–1009. https://doi.org/10.1007/s11431-014-5527-z

Simmons, A. , Soci, C. , Nicolas, J. , Bell, B. , Berrisford, P. , Dragani, R. , Flemming, J. , Haimberger, L. , Healy, S. , … Schepers, D. (2020). Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1. Technical Memorandum 859, Reading, UK: ECMWF.222

Solomon, A., Richter, J. H., and Bacmeister, J. T. (2014). An objective analysis of the QBO in ERA-Interim and the Community Atmosphere Model, version 5. Geophys. Res. Lett., 41(22), 7791–7798. https://doi.org/10.1002/2014gl061801

Talaat, E. R., Yee, J. H., and Zhu, X. (2001). Observations of the 6.5-day wave in the mesosphere and lower thermosphere. J. Geophys. Res.:Atmos., 106(D18), 20715–20723. https://doi.org/10.1029/2001JD900227

Talaat, E. R., Yee, J. H., and Zhu, X. (2002). The 6.5-day wave in the tropical stratosphere and mesosphere. J. Geophys. Res. :Atmos., 107(D12), 4133. https://doi.org/10.1029/2001JD000822

Tao, M. C., Konopka, P., Ploeger, F., Riese, M., Müller, R., and Volk, C. M. (2015). Impact of stratospheric major warmings and the quasi-biennial oscillation on the variability of stratospheric water vapor. Geophys. Res. Lett., 42(11), 4599–4607. https://doi.org/10.1002/2015gl064443

von Savigny, C., Robert, C., Bovensmann, H., Burrows, J. P., and Schwartz, M. (2007). Satellite observations of the quasi 5-day wave in noctilucent clouds and mesopause temperatures. Geophys. Res. Lett., 34(24), L24808. https://doi.org/10.1029/2007gl030987

Wallace, J. M., Panetta, R. L., and Estberg, J. (1993). Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50(12), 1751–1762. https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2

Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 285–295. https://doi.org/10.26464/epp2020024

Wu, D. L., Hays, P. B., and Skinner, W. R. (1994). Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys. Res. Lett., 21(24), 2733–2736. https://doi.org/10.1029/94GL02660

Xu, J. Y., Liu, H. L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J., Russell III, J. M., and Mlynczak, M. G. (2007). Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J. Geophys. Res.:Atmos., 112(D9), D09102. https://doi.org/10.1029/2006jd007711

Zawodny, J. M., and McCormick, M. P. (1991). Stratospheric aerosol and gas experiment II measurements of the quasi -biennial oscillations in ozone and nitrogen dioxide. J. Geophys. Res.:Atmos., 96(D5), 9371–9377. https://doi.org/10.1029/91JD00517

Zhang, X. L., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., and Mlynczak, M. G. (2006). Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res.:Space Phys., 111(A10), A10S08. https://doi.org/10.1029/2005ja011504

[1]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[2]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[3]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[4]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[5]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[6]

Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052

[7]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[8]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[9]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[10]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[11]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[12]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[13]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[14]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[15]

YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics. doi: 10.26464/epp2022020

[16]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[17]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[18]

Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046

[19]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[20]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Inter-annual variations of 6.5-day planetary waves and their relations with QBO

YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li