Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ying-Ying Huang, Jun Cui, Hui-Jun Li, Chong-Yin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics. http://doi.org/10.26464/epp2022005

doi: 10.26464/epp2022005

Inter-annual variations of 6.5-day planetary waves and their relations with QBO

1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China;

2 State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing, China;

3 CAS Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China;

4 Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China;

5 School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China;

6 College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China

7 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Corresponding author: Ying-Ying Huang,

Fund Project: Natural Science Foundation of Jiangsu Province through grants BK20150709, BK20161531 National Natural Science Foundation of China through grants 41504118, 41375045, 41525015, and 41774186This work is jointly supported by the National Basic Research Program of China through grant: 2012CB825606 Project Supported by the Specialized Research Fund for State Key Laboratories. Website of data used is at ftp://saber.gats-inc.com/custom/Temp_O3/v2.0/ and https://apps.ecmwf.int/data-catalogues/era5/?class=ea. The authors acknowledge the efforts of the TIMED/SABER team in making the data available and freely downloadable.

This paper studies inter-annual variations of 6.5-Day Waves (6.5DWs) in 20110 km between 52°S52°N during March 2002January 2021 and their relations with equatorial stratospheric Quasi-Biennial Oscillation (QBO). 6.5DWs’ amplitudes in temperature are calculated based on SABER/TIMED observations. QBO zonal winds are obtained from ERA5 reanalysis dataset. QBO phases are derived from Empirical Orthogonal Functions (EOF) method. Wavelet analysis of 6.5DW variations demonstrates obvious spectral maximums around 2838 months in 32°52°N and 2630 months in 32°52°S. In the Northern Hemisphere, peak periods get longer poleward, while they remain unchanged with latitude in the Southern Hemisphere. Residual 6.5DWs’ amplitudes are calculated by removing composite amplitudes from 6.5DWs’ amplitudes. Comparisons between QBO and the monthly maximum residual 6.5DWs’ amplitudes (A_Mmax) show clear relations between QBO and 6.5DWs in both hemispheres, especially in the NH. When A_Mmax is large in the NH, mean QBO profile is easterly at all levels from 70 to 5 hPa. When it’s weak, mean QBO wind is weak westerly below 30 hPa. Linear Pearson correlation coefficients between QBO phases and A_Mmax show large positive values in 60110 km between 20°52°N in April and around 64 km at 24°S in February, and large negative values from 80 to 110 km between 20°N50°N in August and at 96106 km between 20°S44°S in February. These results indicate quantitative relations between QBO and 6.5DWs and provide credible evidences for further studies of QBO modulations on long-term variations of 6.5DWs.

Key words:

Anstey, J. A., and T. G. Shepherd (2014), High-latitude influence of the quasi-biennial oscillation, Quarterly Journal of the Royal Meteorological Society, 140(678), 1-21, doi:10.1002/qj.2132. Anstey, J. A., T. G. Shepherd, and J. F. Scinocca (2010), Influence of the Quasi-Biennial Oscillation on the Extratropical Winter Stratosphere in an Atmospheric General Circulation Model and in Reanalysis Data, Journal of the Atmospheric Sciences, 67(5), 1402-1419, doi:10.1175/2009jas3292.1. Boville, B. A. (1984), The influence of the polar night jet on the tropospheric circulation in a GCM, 41(7), 1132-1142. Baldwin, M. P., and T. J. Dunkerton (1989), Observations and statistical simulations of a proposed solar cycle/QBO/weather relationship, Geophysical research letters, 16(8), 863-866. Baldwin, M. P., L. Gray, T. Dunkerton, K. Hamilton, P. Haynes, W. Randel, J. Holton, M. Alexander, I. Hirota, and T. Horinouchi (2001), The quasi‐biennial oscillation, Reviews of Geophysics, 39(2), 179-229. Belova, A., S. Kirkwood, D. Murtagh, W. Singer, W. Hocking, and N. Mitchell (2008), Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007, paper presented at Annales Geophysicae, Copernicus publications. Balachandran, N. K., and D. Rind (1995), Modeling the Effects of UV Variability and the QBO on the Troposphere–Stratosphere System. Part I:. The Middle Atmosphere, Journal of Climate, 8(8), 2058-2079. de Wit, R. J., D. Janches, D. C. Fritts, and R. E. Hibbins (2016), QBO modulation of the mesopause gravity wave momentum flux over Tierra del Fuego, Geophysical Research Letters, 43(8), 4049-4055, doi:10.1002/2016gl068599. Day, K. A., M. Taylor, and N. J. Mitchell (2012), Mean winds, temperatures and the 16-and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42° N, 111° W), Atmospheric Chemistry and Physics, 12(3), 1571-1585. Fraedrich, K., S. Pawson, and R. Wang (1993), An EOF analysis of the vertical-time delay structure of the quasi-biennial oscillation, Journal of the atmospheric sciences, 50(20), 3357-3365. García-Comas, M., et al. (2008), Errors in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters, Journal of Geophysical Research, 113(D24), doi:10.1029/2008jd010105. Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh (2012), Does the Holton–Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex?, Journal of the Atmospheric Sciences, 69(5), 1713-1733, doi:10.1175/jas-d-11-0209.1. Gray, L., S. Phipps, T. Dunkerton, M. Baldwin, E. Drysdale, and M. Allen (2001), A data study of the influence of the equatorial upper stratosphere on northern‐hemisphere stratospheric sudden warmings, Quarterly Journal of the Royal Meteorological Society, 127(576), 1985-2003. Gan, Q., J. Yue, L. C. Chang, W. B. Wang, S. D. Zhang, and J. Du (2015), Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere, Annales Geophysicae, 33(7), 913-922, doi:10.5194/angeo-33-913-2015. Gu, S.-Y., H. Ruan, C.-Y. Yang, Q. Gan, X. Dou, and N. Wang (2018), The Morphology of the 6-Day Wave in Both the Neutral Atmosphere and F Region Ionosphere Under Solar Minimum Conditions, Journal of Geophysical Research: Space Physics, 123(5), 4232-4240, doi:10.1029/2018ja025302. Gu, S. Y., X. K. Dou, C. Y. Yang, M. Jia, K. M. Huang, C. M. Huang, and S. D. Zhang (2019), Climatology and Anomaly of the Quasi‐Two‐Day Wave Behaviors During 2003–2018 Austral Summer Periods, Journal of Geophysical Research: Space Physics, 124(1), 544-556, doi:10.1029/2018ja026047. Hersbach, H., et al. (2020), The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049, doi:10.1002/qj.3803. Holton, J. R., and H.-C. Tan (1980), The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, Journal of the Atmospheric Sciences, 37(10), 2200-2208. Huang, Y. Y., S. D. Zhang, F. Yi, C. M. Huang, K. M. Huang, Q. Gan, and Y. Gong (2013), Global climatological variability of quasi-two-day waves revealed by TIMED/SABER observations, Annales Geophysicae, 31(6), 1061-1075, doi:10.5194/angeo-31-1061-2013. Huang, Y. Y., S. D. Zhang, C. Y. Li, H. J. Li, K. M. Huang, and C. M. Huang (2017), Annual and interannual variations in global 6.5DWs from 20 to 110 km during 2002-2016 observed by TIMED/SABER, Journal of Geophysical Research: Space Physics, 122(8), 8985-9002, doi:10.1002/2017ja023886. Jiang, G., J. Xu, J. Xiong, R. Ma, B. Ning, Y. Murayama, D. Thorsen, S. Gurubaran, R. Vincent, and I. Reid (2008a), A case study of the mesospheric 6.5‐day wave observed by radar systems, Journal of Geophysical Research: Atmospheres, 113(D16). Jiang, G., J. Xiong, W. Wan, B. Ning, and L. Liu (2008b), Observation of 6.5-day waves in the MLT region over Wuhan, Journal of Atmospheric and Solar-Terrestrial Physics, 70(1), 41-48, doi:10.1016/j.jastp.2007.09.008. John, S. R., and K. K. Kumar (2012), TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere, Climate Dynamics, 39(6), 1489-1505, doi:10.1007/s00382-012-1329-9. Kim, Y. H., and H. Y. Chun (2015), Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2, Journal of Geophysical Research: Atmospheres, 120(3), 1065-1090, doi:10.1002/2014jd022174. Kishore, P., S. P. Namboothiri, K. Igarashi, S. Gurubaran, S. Sridharan, R. Rajaram, and M. Venkat Ratnam (2004), MF radar observations of 6.5-day wave in the equatorial mesosphere and lower thermosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 66(6-9), 507-515, doi:10.1016/j.jastp.2004.01.026. Laskar, F. I., J. L. Chau, G. Stober, P. Hoffmann, C. M. Hall, and M. Tsutsumi (2016), Quasi Biennial Oscillation Modulation of the Middle and High Latitude Mesospheric Semi-Diurnal Tides During August-September, Journal of Geophysical Research: Space Physics, doi:10.1002/2015ja022065. Li, T., C. Y. She, S. E. Palo, Q. Wu, H.-L. Liu, and M. L. Salby (2008), Coordinated lidar and TIMED observations of the quasi-two-day wave during August 2002–2004 and possible quasi-biennial oscillation influence, Advances in Space Research, 41(9), 1463-1471, doi:10.1016/j.asr.2007.03.052. Li, X., W. Wan, Z. Ren, L. Liu, and B. Ning (2015), The variability of nonmigrating tides detected from TIMED/SABER observations, Journal of Geophysical Research: Space Physics, 120(12), 10,793-710,808, doi:10.1002/2015ja021577. Lima, L. M., P. P. Batista, B. R. Clemesha, and H. Takahashi (2005), The 6.5-day oscillations observed in meteor winds over Cachoeira Paulista (22.7°S), Advances in Space Research, 36(11), 2212-2217, doi:10.1016/j.asr.2005.06.005. Lin, P., I. Held, and Y. Ming (2019), The Early Development of the 2015/16 Quasi-Biennial Oscillation Disruption, Journal of the Atmospheric Sciences, 76(3), 821-836, doi:10.1175/jas-d-18-0292.1. Liu, H. L., E. R. Talaat, R. G. Roble, R. S. Lieberman, D. M. Riggin, and J. H. Yee (2004), The 6.5-day wave and its seasonal variability in the middle and upper atmosphere, Journal of Geophysical Research: Atmospheres, 109(D21), n/a-n/a, doi:10.1029/2004jd004795. Liu, M., J. Xu, H. Liu, and X. Liu (2015), Possible modulation of migrating diurnal tide by latitudinal gradient of zonal wind observed by SABER/TIMED, Science China Earth Sciences, 59(2), 408-417, doi:10.1007/s11430-015-5185-4. Merkel, A. W., G. E. Thomas, S. E. Palo, and S. M. Bailey (2003), Observations of the 5-day planetary wave in PMC measurements from the Student Nitric Oxide Explorer Satellite, Geophysical Research Letters, 30(4), doi:10.1029/2002gl016524. Merzlyakov, E. G., T. V. Solovjova, and A. A. Yudakov (2013), The interannual variability of a 5–7 day wave in the middle atmosphere in autumn from ERA product data, Aura MLS data, and meteor wind data, Journal of Atmospheric and Solar-Terrestrial Physics, 102, 281-289, doi:10.1016/j.jastp.2013.06.008. Merzlyakov, E. G., C. Jacobi, and T. V. Solovjova (2015), The year-to-year variability of the autumn transition dates in the mesosphere/lower thermosphere wind regime and its coupling with the dynamics of the stratosphere and troposphere, Journal of Atmospheric and Solar-Terrestrial Physics, 122, 9-17, doi:10.1016/j.jastp.2014.11.002. Meyer, C. K., and J. M. Forbes (1997), A 6.5-day westward propagating planetary wave: Origin and characteristics, Journal of Geophysical Research: Atmospheres, 102(D22), 26173-26178, doi:10.1029/97jd01464. Miyoshi, Y., and T. Hirooka (2003), Quasi-biennial variation of the 5-day wave in the stratosphere, Journal of Geophysical Research, 108(D19), doi:10.1029/2002jd003145. Newman, P. A., L. Coy, S. Pawson, and L. R. Lait (2016), The anomalous change in the QBO in 2015-2016, Geophysical Research Letters, 43(16), 8791-8797, doi:10.1002/2016gl070373. Pancheva, D., P. Mukhtarov, B. Andonov, and J. M. Forbes (2010), Global distribution and climatological features of the 5–6-day planetary waves seen in the SABER/TIMED temperatures (2002–2007), Journal of Atmospheric and Solar-Terrestrial Physics, 72(1), 26-37, doi:10.1016/j.jastp.2009.10.005. Pancheva, D., P. Mukhtarov, and D. E. Siskind (2018), Climatology of the quasi-2-day waves observed in the MLS/Aura measurements (2005–2014), Journal of Atmospheric and Solar-Terrestrial Physics, 171, 210-224, doi:10.1016/j.jastp.2017.05.002. Qin, Y., S. Y. Gu, C. K. M. Teng, X. K. Dou, Y. Yu, and N. Li (2020), Comprehensive Study of the Climatology of the Quasi‐6‐Day Wave in the MLT Region Based on Aura/MLS Observations and SD‐WACCM‐X Simulations, Journal of Geophysical Research: Space Physics, 126(1), doi:10.1029/2020ja028454. Riggin, D. M., et al. (2006), Observations of the 5-day wave in the mesosphere and lower thermosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 68(3-5), 323-339, doi: 10.1016/j.jastp.2005.05.010. Reed, R. J., W. J. Campbell, L. A. Rasmussen, and D. G. J. J. o. G. R. Rogers (1961), Evidence of a downward‐propagating, annual wind reversal in the equatorial stratosphere, 66(3), 813-818. Rezac, L., A. Kutepov, J. M. Russell, A. G. Feofilov, J. Yue, and R. A. Goldberg (2015), Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements, Journal of Atmospheric and Solar-Terrestrial Physics, 130-131, 23-42, doi:10.1016/j.jastp.2015.05.004. Shuai, J., S. Zhang, C. Huang, F. Yi, K. Huang, Q. Gan, and Y. Gong (2014), Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations, Science China Technological Sciences, 57(5), 998-1009, doi:10.1007/s11431-014-5527-z. Solomon, A., J. H. Richter, and J. T. Bacmeister (2014), An objective analysis of the QBO in ERA-Interim and the Community Atmosphere Model, version 5, Geophysical Research Letters, 41(22), 7791-7798, doi:10.1002/2014gl061801. Simmons, A. J., et al. (2020), 2020-Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1, Technical Memorandum 859, ECMWF, Reading, UK. Talaat, E., J. H. Yee, and X. Zhu (2001), Observations of the 6.5‐day wave in the mesosphere and lower thermosphere, Journal of Geophysical Research: Atmospheres, 106(D18), 20715-20723. Talaat, E., J. H. Yee, and X. Zhu (2002), The 6.5‐day wave in the tropical stratosphere and mesosphere, Journal of Geophysical Research: Atmospheres, 107(D12). Tao, M., P. Konopka, F. Ploeger, M. Riese, R. Müller, and C. M. Volk (2015), Impact of stratospheric major warmings and the quasi-biennial oscillation on the variability of stratospheric water vapor, Geophysical Research Letters, 42(11), 4599-4607, doi:10.1002/2015gl064443. von Savigny, C., C. Robert, H. Bovensmann, J. P. Burrows, and M. Schwartz (2007), Satellite observations of the quasi 5-day wave in noctilucent clouds and mesopause temperatures, Geophysical Research Letters, 34(24), doi:10.1029/2007gl030987. Wallace, J. M., R. L. Panetta, and J. Estberg (1993), Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space, Journal of the atmospheric sciences, 50(12), 1751-1762. Wu, D., P. Hays, and W. Skinner (1994), Observations of the 5-day wave in the mesosphere and lower thermosphere, Geophysical Research Letters, 21(24), 2733-2736. Xu, J., H. L. Liu, W. Yuan, A. K. Smith, R. G. Roble, C. J. Mertens, J. M. Russell, and M. G. Mlynczak (2007), Mesopause structure from Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) observations, Journal of Geophysical Research, 112(D9), doi:10.1029/2006jd007711. Zawodny, J. M., and M. P. McCormick (1991), Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide, Journal of Geophysical Research: Atmospheres, 96(D5), 9371-9377. Zhang, X., J. M. Forbes, M. E. Hagan, J. M. Russell, S. E. Palo, C. J. Mertens, and M. G. Mlynczak (2006), Monthly tidal temperatures 20–120 km from TIMED/SABER, Journal of Geophysical Research, 111(A10), doi:10.1029/2005ja011504.

[1]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[2]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[3]

ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041

[4]

QingHua Huang, 2021: Annual Meeting minutes of the Chinese Geoscience Union, 2020, Earth and Planetary Physics, 5, 121-121. doi: 10.26464/epp2021013

[5]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[6]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[7]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[8]

Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046

[9]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[10]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[11]

ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069

[12]

Gang Lu, Liang Zhao, Ling Chen, Bo Wan, FuYuan Wu, 2021: Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?, Earth and Planetary Physics, 5, 123-140. doi: 10.26464/epp2021014

[13]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[14]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[15]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[16]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[17]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[18]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[19]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[20]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Inter-annual variations of 6.5-day planetary waves and their relations with QBO

Ying-Ying Huang, Jun Cui, Hui-Jun Li, Chong-Yin Li