Citation:
Ullah, S., Li, H. L., Rauf, A., Meng, L., Wang, B., Ge, S. C. and Wang, M. Y. (2021). Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region. Earth Planet. Phys., 5(2), 196–204doi: 10.26464/epp2021016
2021, 5(2): 196-204. doi: 10.26464/epp2021016
Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region
1. | School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China |
2. | Terahertz Science and Technology Key Laboratory of Sichuan Province, Chengdu 610054, China |
3. | National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China |
4. | School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China |
For the first time, the effect of ions on complex conductivity and permittivity of dusty plasma at Polar Mesosphere Summer Echoes (PMSE) altitude is analyzed. Because of ions higher mass and smaller thermal velocity, generally, their effects are not considered in the study of electromagnetic properties of dusty plasmas. In this study, we modified the equations of conductivity and permittivity by adding the effect of ions. In the PMSE altitude region between 80 and 90 km, a local reduction in electron density (i.e., an electron bite-out), is produced by electron absorption onto dust particles. The bite-out condition contains high dust density and smaller electron density. From simulation results in comparatively strong bite-out conditions, we found that the ion effects on conductivity become significant with smaller dust size, lower electron temperature, and lower neutral density. For comparatively weak bite-out conditions, the ion effects on conductivity become significant with larger dust size, higher electron temperature, and higher neutral density. On the other hand, for different dust sizes, electron temperatures and neutral density, the ion effects on complex permittivity become significant only in very strong bite-out conditions. Based on these simulation results, we conclude that, in the absence of electron bite-out conditions, the effect of ions on complex conductivity and permittivity is not significant and can be ignored. However, during bite-out conditions, the effect of ions becomes significant and cannot be ignored because it significantly changes the conductivity and permittivity of dusty plasmas.
Biebricher, A., and Havnes, O. (2012). Non-equilibrium modeling of the PMSE Overshoot Effect revisited: a comprehensive study. J. Plasma Phys., 78(3), 303–319. https://doi.org/10.1017/S0022377812000141 |
Biebricher, A., Havnes, O., and Bast, R. (2012). On the necessary complexity of modeling of the polar mesosphere summer echo overshoot effect. J. Plasma. Phys., 78(3), 225–239. https://doi.org/10.1017/S0022377811000596 |
Blix, T. A. (1999). The importance of charged aerosols in the polar mesosphere in connection with noctilucent clouds and polar mesosphere summer echoes. Adv. Space Res., 24(12), 1645–1654. https://doi.org/10.1016/S0273-1177(99)00332-4 |
Chen, C., and Scales, W. A. (2005). Electron temperature enhancement effects on plasma irregularities associated with charged dust in the Earth’s mesosphere. J. Geophys. Res., 110(A12), A12313. https://doi.org/10.1029/2005JA011341 |
Chilson, P. B., Belova, E., Rietveld, M. T., Kirkwood, S., and Hoppe, U. P. (2000). First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett., 27(23), 3801–3804. https://doi.org/10.1029/2000GL011897 |
Duan, J. Z., Wang, C. L., Zhang, J. R., Ma, S. Q., Hong, X. R., Sun, J. A., Duan, W. S., and Yang, L. (2012). Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma. Phys. Plasmas, 19(8), 083703. https://doi.org/10.1063/1.4744972 |
Friedrich, M., Torkar, K. M., Singer, W., Strelnikova, I., Rapp, M., and Robertson, S. (2009). Signatures of mesospheric particles in ionospheric data. Ann. Geophys., 27(2), 823–829. https://doi.org/10.5194/angeo-27-823-2009 |
Ge, S. C., Li, H. L., Meng, L., Wang, M. Y., Xu, T., Ullah, S., Rauf, A., and Abdel, H. (2020). On the radar frequency dependence of polar mesosphere summer echoes. Earth Planet. Phys., 4(6), 571–578. |
Ginzburg, V. L. (1970). The Propagation of Electromagnetic Waves in Plasmas. Oxford: Pergamon.222 |
Havnes, O., Melandsø, F., La Hoz, C., Aslaksen, T. K., and Hartquist, T. (1992). Charged dust in the Earth's mesopause; effects on radar backscatter. Phys. Scr., 45(5), 535–544. https://doi.org/10.1088/0031-8949/45/5/022 |
Havnes, O., Trøim, J., Blix, T., Mortensen, W., Næsheim, L. I., Thrane, E., and Tønnesen, T. (1996). First detection of charged dust particles in the Earth's mesosphere. J. Geophys. Res., 101(A5), 10839–10847. https://doi.org/10.1029/96JA00003 |
Havnes, O., La Hoz, C., Næsheim, L. I., and Rietveld, M. T. (2003). First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett., 30(23), 2229. https://doi.org/10.1029/2003GL018429 |
Havnes, O. (2004). Polar mesospheric summer echoes (PMSE) overshoot effect due to cycling of artificial electron heating. J. Geophys. Res., 109(A2), A02309. https://doi.org/10.1029/2003JA010159 |
Jana, M. R., Sen, A., and Kaw, P. K. (1993). Collective effects due to charge-fluctuation dynamics in a dusty plasma. Phys. Rev. E, 48(5), 3930–3933. https://doi.org/10.1103/PhysRevE.48.3930 |
Jia, J. S., Yuan, C. X., Gao, R. L., Wang, Y., Liu, Y. Z., Gao, J. Y., Zhou, Z. X., Sun, X. D., Wu, J., … and Pu, S. Z. (2015). Propagation of electromagnetic waves in a weakly ionized dusty plasma. J. Phys. D: Appl. Phys., 48(46), 465201. https://doi.org/10.1088/0022-3727/48/46/465201 |
Kassa, M., Havnes, O., and Belova, E. (2005). The effect of electron bite-outs on artificial electron heating and the PMSE overshoot. Ann. Geophys., 23(12), 3633–3643. https://doi.org/10.5194/angeo-23-3633-2005 |
Lübken, F. J. (1999). Thermal structure of the Arctic summer mesosphere. J. Geophys. Res., 104(D8), 9135–9149. https://doi.org/10.1029/1999JD900076 |
Ma, J. X., and Yu, M. Y. (1994). Langmuir wave instability in a dusty plasma. Phys. Rev. E, 50(4), R2431–R2434. https://doi.org/10.1103/PhysRevE.50.R2431 |
Mahmoudian, A., and Scales, W. A. (2012). Temporal evolution of radar echoes associated with mesospheric dust clouds after turn-on of radio wave heating. J. Geophys. Res., 117(D6), D06221. https://doi.org/10.1029/2011JD017166 |
Næsheim, L. I., Havnes, O., and La Hoz, C. (2008). A comparison of polar mesosphere summer echo at VHF (224 MHz) and UHF (930 MHz) and the effects of artificial electron heating. J. Geophys. Res., 113(D8), D08205. https://doi.org/10.1029/2007JD009245 |
Rapp, M., and Lübken, F. J. (2000). Electron temperature control of PMSE. Geophys. Res. Lett., 27(20), 3285–3288. https://doi.org/10.1029/2000GL011922 |
Rapp, M., and Lübken, F. J. (2004). Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmos. Chem. Phys., 4(11-12), 2601–2633. https://doi.org/10.5194/acp-4-2601-2004 |
Rauf, A., Li, H. L., Ullah, S., Meng, L., Wang, B., and Wang, M. Y. (2018). Investigation of PMSE dependence on high energy particle precipitation during their simultaneous occurrence. Adv. Space Res., 63(1), 309–316. https://doi.org/10.1016/j.asr.2018.09.007 |
Routledge, G., Kosch, M. J., Senior, A., Kavanagh, A. J., McCrea, I. W., and Rietveld, M. T. (2011). A statistical survey of electron temperature enhancements in heater modulated polar mesospheric summer echoes at EISCAT. J. Atmos. Solar-Terr. Phys., 73(4), 472–482. https://doi.org/10.1016/j.jastp.2010.11.004 |
Scales, W. (2004). Electron temperature effects on small-scale plasma irregularities associated with charged dust in the Earth’s mesosphere. IEEE Trans. Plasma Sci., 32(2), 724–730. https://doi.org/10.1109/tps.2004.826082 |
Scales, W. A., and Mahmoudian, A. (2016). Charged dust phenomena in the near-Earth space environment. Rep. Prog. Phys., 79(10), 106802. https://doi.org/10.1088/0034-4885/79/10/106802 |
Senior, A., Mahmoudian, A., Pinedo, H., La Hoz, C., Rietveld, M. T., Scales, W. A., and Kosch, M. J. (2014). First modulation of high-frequency polar mesospheric summer echoes by radio heating of the ionosphere. Geophys. Res. Lett., 41(15), 5347–5353. https://doi.org/10.1002/2014GL060703 |
Shi, Y. X., Ge, D. B., and Wu, J. (2007). Theoretical analysis of microwave attenuation constant of weakly ionized dusty plasma. Chin. J. Geophys., 50(4), 877–883. https://doi.org/10.1002/cjg2.1105 |
Shukla, P. K., and Mamun, A. A. (2002). Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.222 |
Singer, W., Latteck, R., Friedrich, M., Wakabayashi, M., and Rapp, M. (2011). Seasonal and solar activity variability of D-region electron density at 69°N. J. Atmos. Solar-Terr. Phys., 73(9), 925–933. https://doi.org/10.1016/j.jastp.2010.09.012 |
Ulwick, J. C., Baker, K. D., Kelley, M. C., Balsley, B. B., and Ecklund, W. L. (1988). Comparison of simultaneous MST radar and electron density probe measurements during STATE. J. Geophys. Res., 93(D6), 6989–7000. https://doi.org/10.1029/JD093iD06p06989 |
Von Zahn, U., and Meyer, W. (1989). Mesopause temperatures in polar summer. J. Geophys. Res., 94(D12), 14647–14651. https://doi.org/10.1029/JD094iD12p14647 |
Von Zahn, U., and Bremer, J. (1999). Simultaneous and common-volume observations of noctilucent clouds and polar mesosphere summer echoes. Geophys. Res. Lett., 26(11), 1521–1524. https://doi.org/10.1029/1999gl900206 |
Weingartner, J. C., and Draine, B. T. (2001). Photoelectric emission from interstellar dust: grain charging and gas heating. Astrophys. J. Suppl. Ser., 134(2), 263–281. https://doi.org/10.1086/320852 |
[1] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[2] |
HaiLong Li, ShuCan Ge, Lin Meng, MaoYan Wang, Abdur Rauf, Safi Ullah, 2021: Exploring the occurrence rate of PMSE-Es by Digisonde at Tromsø, Earth and Planetary Physics, 5, 187-195. doi: 10.26464/epp2021017 |
[3] |
Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006 |
[4] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[5] |
JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042 |
[6] |
XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041 |
[7] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[8] |
Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049 |
[9] |
Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044 |
[10] |
Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047 |
[11] |
Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042 |
[12] |
Tao Tang, Jun Yang, QuanQi Shi, AnMin Tian, Shi-Chen Bai, Alexander William Degeling, SuiYan Fu, JingXian Liu, Tong Shao, ZeYuan Sun, 2020: The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect, Earth and Planetary Physics, 4, 619-626. doi: 10.26464/epp2020066 |
[13] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[14] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[15] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[16] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[17] |
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039 |
[18] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[19] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[20] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)