Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Franco, A. M. S., Fränz, M., Echer, E., and Bolzan, M. J. A. (2019). Correlation length around Mars: A statistical study with MEX and MAVEN observations. Earth Planet. Phys., 3(6), 560–569.doi: 10.26464/epp2019051

2019, 3(6): 560-569. doi: 10.26464/epp2019051

PLANETARY SCIENCES

Correlation length around Mars: A statistical study with MEX and MAVEN observations

1. 

National Institute for Space Research (INPE), Sao Jose dos Campos, Brazil

2. 

Max Planck Institute for Solar System Research, Goettingen, Germany

3. 

Federal University of Jataí, Jataí, Brazil

Corresponding author: Adriane Marques de Souza Franco, adrianemarquesds@gmail.com

Received Date: 2019-03-02
Web Publishing Date: 2019-11-01

Correlation lengths of ultra-low-frequency (ULF) waves around Mars were computed for the first time, using data from MEX (electron density from 2004 to 2015) and MAVEN (electron density and magnetic field from 2014 to 2016). Analysis of the MEX data found that, for the frequency range 8 to 50 mHz, correlation length in electron density varied between 13 and 17 seconds (temporal scale) and between 5.5 × 103 km and 6.8 × 103 km (spatial scale). For the MAVEN time interval, correlation length was found to vary between 11 and 16 seconds (temporal scale) and 2 × 103 – 4.5×103 km in spatial scale. In the magnetic field data, correlation lengths are observed to be between 8–15 seconds (temporal scale) and between 1 × 103 and 5 × 103 km (spatial scale) over the same frequency range. We observe that the cross sections of the plasma regions at the dayside of Mars are smaller than these correlation lengths in these regions in both analyses, where the correlation length derived from the MEX electron density data was between 5 and 25 times the size of the magnetosheath and the magnetic pile-up region (MPR), respectively. For MAVEN these ratios are about 4 (magnetosheath) and 11 (MPR) in electron density and between 1.5 and 5.5 for magnetic field data, respectively. These results indicate that waves at the magnetosheath/MPR can be related to oscillations in the upper ionosphere. In a local region, wave trains may cause resonance effects at the planetary ionopause, which consequently contributes to the enhanced ion escape from the atmosphere.

Key words: Mars induced magnetosphere; ULF waves; correlation length

Archer, M., Horbury, T. S., Lucek, E. A., Mazelle, C., Balogh, A., and Dandouras, I. (2005). Size and shape of ULF waves in the terrestrial foreshock. J. Geophys. Res. Space Phys., 110(A5), A05208. https://doi.org/10.1029/2004JA010791

Barabash, S., Lundin, R., Andersson, H., Gimholt, J., Holmström, M., Noberg, O., Yamauchi, M., Asamura, K., Coates, A. J., … Bochsler, P. (2004). ASPERA-3: Analyser of space plasmas and energetic ions for Mars Express. In A. Wilson (Ed.), Mars Express: the Scientific Payload (pp. 121-139). Noordwijk, Netherlands: ESA Publications Division.222

Cloutier, P. A., and Daniell, Jr. R. E. (1973). Ionospheric currents induced by solar wind interaction with planetary atmospheres. Planet. Space Sci., 21(3), 463–474. https://doi.org/10.1016/0032-0633(73)90043-3

Cloutier, P. A., and Daniell, Jr. R. E. (1979). An electrodynamic model of the solar wind interaction with the ionospheres of Mars and Venus. Planet. Space Sci., 27(8), 1111–1121. https://doi.org/10.1016/0032-0633(79)90082-5

Collinson, G., Wilson III, L. B., Omidi, N., Sibeck, D., Espley, J., Fowler, C. M., Mitchell, D., Grebowsky, J., Mazelle, C., … Jakosky, B. (2018). Solar wind induced waves in the skies of Mars: Ionospheric compression, energization, and escape resulting from the impact of ultralow frequency magnetosonic waves generated upstream of the Martian bow shock. J. Geophys. Res. Space Phys., 123(9), 7241–7256. https://doi.org/10.1029/2018JA025414

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015a). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Connerney, J. E. P., Espley, J. R., DiBraccio, G. A., Gruesbeck, J. R., Oliversen, R. J., Mitchell, D. L., Halekas, J., Mazelle, C., Brain, D., and Jakosky, B. M. (2015b). First results of the MAVEN magnetic field investigation. Geophys. Res. Lett., 42(21), 8819–8827. https://doi.org/10.1002/2015GL065366

Delva, M., and Dubinin, E. (1998). Upstream ULF fluctuations near Mars. J. Geophys. Res. Space Phys., 103(A1), 317–326. https://doi.org/10.1029/97JA02501

Espley, J. R., Cloutier, P. A., Brain, D. A., Crider, D. H., and Acuña, M. H. (2004). Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. Space Phys., 109(A7), A07213. https://doi.org/10.1029/2003JA010193

Fisk, L. A., and Sari, J. W. (1973). Correlation length for interplanetary magnetic field fluctuations. J. Geophys. Res., 78(28), 6729–6736. https://doi.org/10.1029/JA078i028p06729

Fränz, M., Dubinin, E., Roussos, E., Woch, J., Winningham, J. D., Frahm, R., Coates, A. J., Fedorov, A., Barabash, S., and Lundin, R. (2006). Plasma moments in the environment of Mars. Mars express ASPERA-3 observations. Space Sci. Rev., 126(1-4), 165–207. https://doi.org/10.1007/s11214-006-9115-9

Fränz, M., Echer, E., Marques De Souza, A., Dubinin, E., and Zhang, T. L. (2017). Ultra low frequency waves at Venus: observations by the Venus express spacecraft. Planet. Space Sci., 146, 55–65. https://doi.org/10.1016/j.pss.2017.08.011

Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., Mcfadden, J. P., Connerney, J. E. P., Espley, J. R., … Jakosky, B. M. (2017). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. J. Geophys. Res. Space Phys., 122(1), 547–578. https://doi.org/10.1002/2016JA023167

Han, X., Fräenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., … Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophys. Res. Lett., 41(23), 8221–8227. https://doi.org/10.1002/2014GL062287

Kivelson, M. G. (1995). Pulsations and magnetohydrodynamic waves. In M. G. Kivelson, et al. (Eds.), Introduction to Space Physics (pp. 1875-1883). Cambridge: Cambridge University Press.222

Kivelson, M. G., and Bagenal, F. (2007). Planetary magnetospheres. In P. R. Weissman, et al. (Eds.), Encyclopedia of the Solar System (pp. 519-539). San Diego, CA: Academic.222

Luhmann, J. G., Russell, C. T., Brace, L. H., and Vaisberg, O. L. (1992). The intrinsic magnetic field and solar wind interaction of Mars. In H. Kieffer, et al. (Eds.), Mars (pp. 1090-1134). Tucson, Arizona: University of Arizona Press.222

Luhmann, J. G., Ledvina, S. A., and Russell, C. T. (2004). Induced magnetospheres. Adv. Space Res., 33(11), 1905–1912. https://doi.org/10.1016/j.asr.2003.03.031

Lundin, R., Winningham, D., Barabash, S., Frahm, R. A., Andersson, H., Holmström, M., Grigoriev, A., Yamauchi, M., Borg, H., … Bochsler, P. (2006). Ionospheric plasma acceleration at Mars: ASPERA-3 results. Icarus, 182(2), 308–319. https://doi.org/10.1016/j.icarus.2005.10.035

Lundin, R., Barabash, S., Fedorov, A., Holmstrom, M., Nilsson, H., Sauvaud, J. A., and Yamauchi, M. (2008). Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett., 35(9), L09203. https://doi.org/10.1029/2007GL032884

Lundin, R., Barabash, S., Dubinin, E., Winningham, D., and Yamauchi, M. (2011). Low-altitude acceleration of ionospheric ions at Mars. Geophys. Res. Lett., 38(8), L08108. https://doi.org/10.1029/2011GL047064

Mela, K., and Louie, J. N. (2001). Correlation length and fractal dimension interpretation from seismic data using variograms and power spectra. Geophysics, 66(5), 1372–1378. https://doi.org/10.1190/1.1487083

Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1-4), 495–528. https://doi.org/10.1007/s11214-015-0232-1

Morales, J. J., and Nuevo, M. J. (1993). Physical meaning of the time-correlation length obtained in a computer simulation. Phys. Rev. E, 48(2), 1550–1553. https://doi.org/10.1103/physreve.48.1550

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, E., .. Trotignon, J. G. (2004). The plasma environment of Mars. Space Sci. Rev., 111(1-2), 33–114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92

Palumbo, D. (2012). Determining correlation and coherence lengths in turbulent boundary layer flight data. J. Sound Vib., 331(16), 3721–3737. https://doi.org/10.1016/j.jsv.2012.03.015

Parhi, S., Bieber, J. W., Matthaeus, W. H., and Burger, R. A. (2002). Sensitivity of cosmic ray modulation to the correlation length. Geophys. Res. Lett., 29(8), 99-1–99-3. https://doi.org/10.1029/2001GL013893

Podgorny, I. M., Dubinin, E. M., and Israelevich, P. L. (1980). Laboratory simulation of the induced magnetospheres of comets and Venus. Moon Planets, 23(3), 323–338. https://doi.org/10.1007/BF00902047

Ramstad, R., Barabash, S., Futaana, Y., and Holmström, M. (2017). Solar wind- and EUV-dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements. J. Geophys. Res. Space Phys., 122(7), 7279–7290. https://doi.org/10.1002/2017JA024098

Ruhunusiri, S., Halekas, J. S., Connerney, J. E. P., Espley, J. R., McFadden, J. P., Larson, D. E., Mitchell, D. L., Mazelle, C., and Jakosky, B. M. (2015a). Low-frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions. Geophys. Res. Lett., 42(21), 8917–8924. https://doi.org/10.1002/2015GL064968

Ruhunusiri, S., Halekas, J. S., Connerney, J. E. P., Espley, J., Larson, D., and Mitchell, D. L. (2015b). MAVEN characterization of low-frequency plasma waves in the Martian magnetosphere. In Proceedings of the 46th Lunar and Planetary Science Conference. Woodlands, Texas: LPI Contribution.222

Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y. (1990). Upstream waves at Mars: Phobos observations. Geophys. Res. Lett., 17(6), 897–900. https://doi.org/10.1029/GL017i006p00897

Schwingeschuh, K., Riedler, W., Zhang, T. L., Lichtenegger, H., Rosenbauer, H., Livi, S., Gevai, G., Gringauz, K., Verigin, M., … Luhmann, J. G. (1992). The Martian magnetic field environment: induced or dominated by an intrinsic magnetic field? . Adv. Space Res., 12(9), 213–219. https://doi.org/10.1016/0273-1177(92)90333-S

Trotignon, J. G., Grard, R., and Skalsky, A. (1993). Position and shape of the Martian bow shock: the Phobos 2 plasma wave system observations. Planet. Space Sci., 41(3), 189–198. https://doi.org/10.1016/0032-0633(93)90058-A

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars global surveyor data sets. Planet. Space Sci., 54(4), 357–369. https://doi.org/10.1016/j.pss.2006.01.003

Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Rème, H., and Mazelle, C. (2002). Factors controlling the location of the bow shock at Mars. Geophys. Res. Lett., 29(9), 42–1. https://doi.org/10.1029/2001GL014513

Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and Glassmeier, K. H. (2008). First identification of mirror mode waves in Venus' Magnetosheath?. Geophys. Res. Lett., 35(12), L12204. https://doi.org/10.1029/2008GL033621

Wicks, R. T., Owens, M. J., and Horbury, T. S. (2010). The variation of solar wind correlation lengths over three solar cycles. Solar Phys., 262(1), 191–198. https://doi.org/10.1007/s11207-010-9509-4

Winningham, J. D., Frahm, R. A., Sharber, J. R., Coates, A. J., Linder, D. R., Soobiah, Y., Kallio, E., Espley, J. R., Lundin, R., .. Dierker, C. (2006). Electron oscillations in the induced martian magnetosphere. Icarus, 182(2), 360–370. https://doi.org/10.1016/j.icarus.2005.10.033

[1]

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

[2]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[3]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[4]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[5]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[6]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[7]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[8]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[9]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[10]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[11]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[12]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[13]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[14]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics. doi: 10.26464/epp2020008

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Correlation length around Mars: A statistical study with MEX and MAVEN observations

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan