Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, M. R., Zhou, C., Feng, T., Wang, X., and Zhao, Z. Y. (2022). Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating. Earth Planet. Phys., 6(5), 474–486. http://doi.org/10.26464/epp2022043

doi: 10.26464/epp2022043

SPACE PHYSICS: IONOSPHERIC PHYSICS

Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

School of Computer Science and Information Engineering, Hubei University, Wuhan 430011, China

Corresponding author: Chen Zhou, chenzhou@whu.edu.cnXiang Wang, wangxiang.whu@whu.edu.cn

Received Date: 2022-03-18
Web Publishing Date: 2022-07-29

Parametric decay instability (PDI) is an important process in ionospheric heating. This paper focuses on the frequency and wavevector matching condition in the initial PDI process, the subsequent cascade stage, and the generation of strong Langmuir turbulence. A more general numerical model is established based on Maxwell equations and plasma dynamic equations by coupling high-frequency electromagnetic waves to low-frequency waves via ponderomotive force. The primary PDI, cascade process, and strong Langmuir turbulence are excited in the simulation. The matching condition in the initial PDI stage and cascade process is verified. The result indicates that the cascade ion acoustic wave may induce or accelerate the formation of cavitons and lead to the wavenumber spectrum being more enhanced at 2kL (where kL is the primary Langmuir wavenumber). The wavenumber spectra develop from discrete to continuous spectra, which is attributed to the caviton collapse and strong Langmuir turbulence.

Key words: ionospheric electromagnetic propagation, parametric decay instability, cascade, Langmuir turbulence

Akbari, H., Bhatt, A., La Hoz, C., and Semeter, J. L. (2017). Incoherent scatter plasma lines: observations and applications. Space Sci. Rev., 212(1–2), 249–294.222

Bernhardt, P. A., Tepley, C. A., and Duncan, L. M. (1989). Airglow enhancements associated with plasma cavities formed during ionospheric heating experiments. J. Geophys. Res.:Space Phys., 94(A7), 9071–9092. https://doi.org/10.1029/JA094iA07p09071

Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Rietveld, M. T., Ivanova, I. M., and Baddeley, L. J. (2011). Artificial small-scale field-aligned irregularities in the high latitude F region of the ionosphere induced by an X-mode HF heater wave. Geophys. Res. Lett., 38(8), L08802. https://doi.org/10.1029/2011GL046724

Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Häggström, I., and Kalishin, A. S. (2015). Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: experimental results from multi instrument diagnostics. J. Atmos. Sol. Terr. Phys., 135, 50–63. https://doi.org/10.1016/j.jastp.2015.10.009

Blagoveshchenskaya, N. F., Borisova, T. D., Kalishin, A. S., Yeoman, T. K., and Häggström, I. (2017). First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Sol. Terr. Phys., 155, 36–49. https://doi.org/10.1016/j.jastp.2017.02.003

Boyd, T. J. M., and Sanderson, J. J. (2003). Particle orbit theory. In T. J. M. Boyd, et al. (Eds.), The Physics of Plasmas (pp. 12–47). Cambridge: Cambridge University Press.222

Bryers, C. J., Kosch, M. J., Senior, A., Rietveld, M. T., and Yeoman, T. K. (2013). The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT. J. Geophys. Res.:Space Phys., 118(11), 7472–7481. https://doi.org/10.1002/2013JA019429

Carlson, H. C., Gordon, W. E., and Showen, R. L. (1972). High frequency induced enhancements of the incoherent scatter spectrum at Arecibo. J. Geophys. Res., 77(7), 1242–1250. https://doi.org/10.1029/JA077i007p01242

Chen, F. F. (1984). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.222

Cheung, P. Y., Sulzer M. P., DuBois D. F., and Russell, D. A. (2001). High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo. II. Low duty cycle, altitude-resolved, observations. Phys. Plasmas, 8(3), 802–812.222

Dahl, T., and Murphree, D. (1972). Numerical solution for propagation of longitudinal waves along the geomagnetic field using a three-fluid ionosphere model. IEEE Trans. Antennas Propag., 20(6), 807–809. https://doi.org/10.1109/TAP.1972.1140335

Davidson, R. C., Hammer, D. A., Haber, I., and Wagner, C., E. (1972). Nonlinear development of electromagnetic instabilities in anisotropic plasmas. Phys. Fluids, 15(2), 317–333. https://doi.org/10.1063/1.1693910

DuBois, D. F., Rose, H. A., and Russell, D. (1988). Power spectra of fluctuations in strong Langmuir turbulence. Phys. Rev. Lett., 61(19), 2209–2212. https://doi.org/10.1103/PhysRevLett.61.2209

DuBois, D. F., Rose, H. A., and Russell, D. (1990). Excitation of strong Langmuir turbulence in plasmas near critical density: application to HF heating of the ionosphere. J. Geophys. Res.:Space Phys., 95(A12), 21221–21272. https://doi.org/10.1029/ja095ia12p21221

DuBois, D. F., Rose, H. A., and Russell, D. (1991). Coexistence of parametric decay cascades and caviton collapse at subcritical densities. Phys. Rev. Lett., 66(15), 1970–1973. https://doi.org/10.1103/PhysRevLett.66.1970

DuBois, D. F., Hanssen, A., Rose, H. A., and Russell, D. (1993). Space and time distribution of HF excited Langmuir turbulence in the ionosphere: comparison of theory and experiment. J. Geophys. Res.:Space Phys., 98(A10), 17543–17567. https://doi.org/10.1029/93JA01469

DuBois, D. F., Russell, D. A., Cheung, P. Y., and Sulzer, M. P. (2001). High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo I. Theoretical predictions for altitude-resolved plasma line radar spectra. Phys. Plasmas, 8(3), 791–801. https://doi.org/10.1063/1.1345703

Eliasson, B., and Stenflo, L. (2008). Full-scale simulation study of the initial stage of ionospheric turbulence. J. Geophys. Res., 113(A2), A02305. https://doi.org/10.1029/2007JA012837

Eliasson, B., and Stenflo, L. (2010). Full-scale simulation study of stimulated electromagnetic emissions: the first ten milliseconds. J. Plasma Phys., 76(3–4), 369–375.222

Fejer, J. A., and Kuo, Y. Y. (1973). Structure in the nonlinear saturation spectrum of parametric instabilities. Phys. Fluids, 16(9), 1490–1496. https://doi.org/10.1063/1.1694546

Fejer, J. A. (1979). Ionospheric modification and parametric instabilities. Rev. Geophys., 17(1), 135–153. https://doi.org/10.1029/RG017i001p00135

Feng, T., Liu, M. R., and Zhou, C. (2018). Investigation on matching conditions of Langmuir parametric instability in ionospheric heating. In 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 1–2), Hangzhou, China: IEEE.222

Hagfors, T., Kofman, W., Kopka, H., Stubbe, P., and Äijanen, T. (1983). Observations of enhanced plasma lines by EISCAT during heating experiments. Radio Sci., 18(6), 861–866. https://doi.org/10.1029/RS018i006p00861

Hanssen, A., Mjølhus, E., DuBois, D. F., and Rose, H. A. (1992). Numerical test of the weak turbulence approximation to ionospheric Langmuir turbulence. J. Geophys. Res.:Space Phys., 97(A8), 12073–12091. https://doi.org/10.1029/92JA00874

Inhester, B., Das, A. C., and Fejer, J. A. (1981). Generation of small-scale field-aligned irregularities in ionospheric heating experiments. J. Geophys. Res.:Space Phys., 86(A11), 9101–9106. https://doi.org/10.1029/JA086iA11p09101

Jiang, C. H., Wei, L. H., Yang, G. B., Zhou, C., and Zhao, Z. Y. (2020). Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities. Earth Planet. Phys., 4(6), 565–570. https://doi.org/http://doi.org/10.26464/epp2020059

Kadomtsev, B. B. (1965). Plasma Turbulence. New York: Academic Press.222

Kruer, W. L., and Valeo, E. J. (1973). Nonlinear evolution of the decay instability in a plasma with comparable electron and ion temperatures. Phys. Fluids, 16(5), 675–682. https://doi.org/10.1063/1.1694402

Kuo, S. P., Lee, M. C., and Kossey, P. (1997). Excitation of oscillating two stream instability by upper hybrid pump waves in ionospheric heating experiments at Tromsø. Geophys. Res. Lett., 24(23), 2969–2972. https://doi.org/10.1029/97GL03054

Kuo, S. P. (2001). Cascade of the parametric decay instability in ionospheric heating experiments. J. Geophys. Res.:Space Phys., 106(A4), 5593–5597. https://doi.org/10.1029/2000JA000240

Kuo, S. P. (2003). Parametric excitation of lower hybrid waves by electron plasma waves. Phys. Lett. A, 307(4), 244–248. https://doi.org/10.1016/S0375-9601(02)01601-8

Kuo, S. P. (2014). Overview of ionospheric modification by high frequency (HF) heaters-theory. Prog. Electromagn. Res. B, 60(1), 141–155. https://doi.org/10.2528/PIERB14041805

Kuo, S. P. (2015). Ionospheric modifications in high frequency heating experiments. Phys. Plasmas, 22(1), 012901. https://doi.org/10.1063/1.4905519

Leyser, T. B. (1991). Parametric interaction between upper hybrid and lower hybrid waves in heating experiments. Geophys. Res. Lett., 18(3), 408–411. https://doi.org/10.1029/91gl00136

Liu, Y., Zhou, C., Xu, T., Tang, Q., Deng, Z. X., Chen, G. Y., and Wang, Z. K. (2021). Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region. Earth Planet. Phys., 5(5), 462–482. https://doi.org/10.26464/epp2021025

Nguyen, B. T., Furse, C., and Simpson, J. J. (2015). A 3-D stochastic FDTD model of electromagnetic wave propagation in magnetized ionosphere plasma. IEEE Trans. Antennas Propag., 63(1), 304–313. https://doi.org/10.1109/TAP.2014.2365824

Pedersen, T., Mishin, E., and Esposito, R. (2009). New observations of HF-induced optical emissions from the ionospheric E region. J. Geophys. Res.:Space Phys., 114(A6), A06316. https://doi.org/10.1029/2008JA013596

Perkins, F. W., and Kaw, P. K. (1971). On the role of plasma instabilities in ionospheric heating by radio waves. J. Geophys. Res., 76(1), 282–284. https://doi.org/10.1029/JA076i001p00282

Perkins, F. W., Oberman, C., and Valeo, E. J. (1974). Parametric instabilities and ionospheric modification. J. Geophys. Res., 79(10), 1478–1496. https://doi.org/10.1029/JA079i010p01478

Rietveld, M. T., Isham, B., Kohl, H., La Hoz, C., and Hagfors, T. (2000). Measurements of HF-enhanced plasma and ion lines at EISCAT with high-altitude resolution. J. Geophys. Res.:Space Phys., 105(A4), 7429–7439. https://doi.org/10.1029/1999JA900476

Rush, C. (1986). Ionospheric radio propagation models and predictions—a mini-review. IEEE Trans. Antennas Propag., 34(9), 1163–1170. https://doi.org/10.1109/TAP.1986.1143951

Sipler, D. P., and Biondi, M. A. (1976). Enhanced O I 6300-Å regions produced by the Platteville ionospheric modification experiment. J. Geophys. Res., 81(19), 3467–3470. https://doi.org/10.1029/JA081i019p03467

Song, B., Wong, A. Y., Villaseñor, J., Rosenthal, G., McCarrick, M., Pau, J., and Sentman, D. (1995). Experimental study of double resonance parametric excitations in the ionosphere. Radio Sci., 30(6), 1875–1883. https://doi.org/10.1029/95RS01729

Stenflo, L. (1985). Parametric excitation of collisional modes in the high-latitude ionosphere. J. Geophys. Res., 90(A6), 5355–5356. https://doi.org/10.1029/JA090iA06p05355

Stubbe, P., Kohl, H., and Rietveld, M. T. (1992). Langmuir turbulence and ionospheric modification. J. Geophys. Res., 97(A5), 6285–6297. https://doi.org/10.1029/91JA03047

Tsytovich, V. N. (1970). Nonlinear Processes in a Plasma. New York: Plenum Press.222

Wang, X., Zhou, C., Liu, M. R., Honary, F., Ni, B. B., and Zhao, Z. Y. (2016). Parametric instability induced by X-mode wave heating at EISCAT. J. Geophys. Res.:Space Phys., 121(10), 10536–10548. https://doi.org/10.1002/2016JA023070

Wang, X., and Zhou, C. (2017). Aspect dependence of Langmuir parametric instability excitation observed by EISCAT. Geophys. Res. Lett., 44(18), 9124–9133. https://doi.org/10.1002/2017GL074743

Westman, A., Leyser, T. B., Wannberg, G., and Rietveld, M. T. (1995). Tristatic EISCAT-UHF measurements of the HF modified ionosphere for low background electron temperatures. J. Geophys. Res.:Space Phys., 100(A6), 9717–9728. https://doi.org/10.1029/94JA03337

[1]

Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics, 4, 588-597. doi: 10.26464/epp2020068

[2]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[3]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[4]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[5]

XiuShu Qie, ShanFeng Yuan, HongBo Zhang, RuBin Jiang, ZhiJun Wu, MingYuan Liu, ZhuLing Sun, YunJiao Pu, JinLiang Li, Abhay Srivastava, ZiLong Ma, GaoPeng Lu, 2019: Propagation of positive, negative, and recoil leaders in upward lightning flashes, Earth and Planetary Physics, 3, 102-110. doi: 10.26464/epp2019014

[6]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[7]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[8]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[9]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[10]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[11]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[12]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[13]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[14]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[15]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[16]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011

[17]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[18]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[19]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[20]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating

MoRan Liu, Chen Zhou, Ting Feng, Xiang Wang, ZhengYu Zhao