Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Bouba, A., Njeudjang, K., Yap. L., Saidou, B., Kamguia, J., and Tabod, T. C. (2022). Interpretation of locally high gravity anomalies using terrestrial gravity data in Bagodo, North Cameroon. Earth Planet. Phys., 6(4), 378–384. http://doi.org/10.26464/epp2022033

2022, 6(4): 378-384. doi: 10.26464/epp2022033

SOLID EARTH: GEODESY AND GRAVITY

Interpretation of locally high gravity anomalies using terrestrial gravity data in Bagodo, North Cameroon

1. 

Department of Physics, Higher Teachers’ Training College, University of Maroua, Cameroon

2. 

Department of Quality Industrial Safety and Environment, National Advanced School of Mines and Petroleum Industries, University of Maroua, Cameroon

3. 

Research Laboratory in Geodesy, National Institute of Cartography, Yaoundé, Cameroon

4. 

Department of Physics, Faculty of Science, University of Maroua, Cameroon

5. 

Department of Physics, Faculty of Science, University of Yaounde I, Cameroon

Corresponding author: Apollinaire Bouba, boubaapollinaire@yahoo.fr,  apollinaire.bouba@univ-maroua.cm

Received Date: 2022-03-07
Web Publishing Date: 2022-05-20

In this work, we interpreted gravity data to determine the structural characteristics responsible for high-gravity anomalies in Bagodo, North Cameroon. These anomalies had not previously been characterized through a local study. Thus, we undertook a regional–residual separation of the gravity anomalies by using the polynomial method. Geophysical signatures of near-surface small-extent geological structures were revealed. To conduct a quantitative interpretation of the gravity anomalies, one profile was drawn on a residual Bouguer anomaly map and then interpreted by spectral analysis, the ideal body solution, and 2.5-dimensional modeling. Our results showed that the intrusive body in the Bagodo area consists of two trapezoidal blocks. The first and second blocks have roofs approximately 7.5 and 14 km deep, respectively, whereas their bases are approximately 17 km deep. These values are in agreement with those obtained by the ideal body solution, which showed two cells with a density contrast of 0.3 g·cm−3 in comparison with the surrounding rocks. The density of this body was estimated to be approximately 3 g·cm−3. The topography of these rocks showed that they are basaltic rocks that would have cooled in fracture zones as an intrusion.

Key words: spectral analysis; ideal body solution; 2.5-dimensional modeling

Apollinaire, B., Joseph, K., Tabod, T. C., Loudi, Y., Robert, N., Ludovic, K. H., and Valentin, O. (2017). Subsurface structural mapping using combined terrestrial and grace gravity data of the Adamawa Plateau (North-Cameroon). Int. J. Geosci., 8(7), 869–887. https://doi.org/10.4236/ijg.2017.87050

Apollinaire, B., Joseph, K., Robert, N., Tabod, T. C., and Philippe, N. N. (2018). Crustal structures of the Adamawa Plateau (Cameroon) from combined terrestrial gravity measurements and GRACE model. Eur. J. Sci. Res., 148(2), 277–287.

Cady, J. W. (1980). Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms. Geophysics, 45(10), 1507–1512. https://doi.org/10.1190/1.1441045

Cooper, G. R. J. (2008). Euler deconvolution with improved accuracy and multiple different structural indices. J. China Univ. Geosci., 19(1), 72–76. https://doi.org/10.1016/S1002-0705(08)60026-6

Dorbath, C., Dorbath, L., Fairhead, J. D., and Stuart, G. W. (1986). A teleseismic delay time study across the Central African Shear Zone in the Adamawa Region of Cameroon, West Africa. Geophys. J. Int., 86(3), 751–766. https://doi.org/10.1111/j.1365-246X.1986.tb00658.x

Dorbath, L., Dorbath, C., Stuart G., and Fairhead, D. (1984). Structure de la croute sous le plateau de l’Adamaoua (Cameroun). Comptes Rendus de l’Academie des Sciences, 298(12), 539–542.

Gerard, A., and Griveau, P. (1972). Interpretation quantitative en gravimetrie ou magnetisme a partir de cartes transformees de gradient vertical. Geophys. Prospect., 20(2), 459–481. https://doi.org/10.1111/j.1365-2478.1972.tb00648.x

Huestis, S. P., and Ander, M. E. (1983). IDB2—A Fortran program for computing extremal bounds in gravity data interpretation. Geophysics, 48(7), 999–1010. https://doi.org/10.1190/1.1441525

Kamgang, P., Njonfang, E., Nono, A., Dedzo, M. G., and Tchoua, F. M. (2010). Petrogenesis of a silicic magma system: Geochemical evidence from Bamenda Mountains, NW Cameroon, Cameroon Volcanic Line. J. Afr. Earth Sci., 58(2), 285–304. https://doi.org/10.1016/j.jafrearsci.2010.03.008

Kampunzu, A. B., Caron, J. P. H., and Lubala, R. T. (1986). The East African rift, magma genesis and astheno-lithospheric dynamics. Episodes, 9(4), 211–216. https://doi.org/10.18814/epiiugs/1986/v9i4/002

Kande, H. L. (2008). Etude géophysique de la structure de la croûte le long du fossé tectonique de la Mbere [Thèse de Doctorat Ph. D.]. Sapientia, Collativa, Cognitio: Université de Yaoundé I.222

Kapajika, B. (2003). Les granites calco-alcalins de l’Ouest de Tibati dans la chaîne panafricaine Nord-équatoriale au Cameroun. Pétrogenèse et structurogenèse [Thèse de Doctorat Ph. D.]. République démocratique du Congo: Université de Lubumbashi.222

Koumetio, F., Noutchogwe, C. T., Nouayou, R., Ndikum, E., Wandji, V. J. T., and Dika, A. (2018). Interpretation of gravity anomaly in the area of Matomb (Center Cameroon) using direct, indirect and inverse methods. Int. J. Res. Innovat. Earth Sci., 5(4), 106–111.

Legeley, P. A., Poudjom-Djomani, Y. H., Boukeke, D. B., Nnange, J. M., Ateba, B., Albouy, Y., and Fairhead, J. D. (1996). Levés gravimétriques de reconnaissance. Paris, France: ORSTOM.222

Le Maréchal, A., and Vincent, P. M. (1971). Le fossé crétacé du Sud-Adamaoua (Cameroun). Cah. ORSTOM, Sér. Géol., 3(1), 67–83.222

Meyers, J. B., Rosendahl, B. R., Harrison, C. G. A., and Ding, Z. D. (1998). Deep-imaging seismic and gravity results from the offshore Cameroon Volcanic Line, and speculation of African hotlines. Tectonophysics, 284(1-2), 31–63. https://doi.org/10.1016/S0040-1951(97)00173-X

Moreau, C., Regnoult, J. M., Déruelle, B., and Robineau, B. (1987). A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics, 141(4), 317–334. https://doi.org/10.1016/0040-1951(87)90206-X

Njeudjang, K., Abate Essi, J. M., Kana, J. D., Teikeu, W. A., Njandjock Nouck, P., Djongyang, N., and Tchinda, R. (2020). Gravity investigation of the Cameroon Volcanic Line in Adamawa region: Geothermal features and structural control. J. Afr. Earth Sci., 165, 103809. https://doi.org/10.1016/j.jafrearsci.2020.103809

Nnange, J. M., Ngako, V., Fairhead, J. D., and Ebinger, C. J. (2000). Depths to density discontinuities beneath the Adamawa plateau region, Central Africa, from spectral analyses of new and existing gravity data. Journal of African Earth Sciences., 30(4), 887–901. https://doi.org/10.1016/S0899-5362(00)00058-0

Noutchogwe Tatchum, C., Tabod, C. T., and Manguelle-Dicoum, E. (2006). A gravity study of the crust beneath the Adamawa fault zone, west central Africa. J. Geophys. Eng., 3(1), 82–89. https://doi.org/10.1088/1742-2132/3/1/009

Parker, R. L. (1974). Best bounds on density and depth from gravity data. Geophysics, 39(5), 644–649. https://doi.org/10.1190/1.1440454

Parker, R. L. (1975). The theory of ideal bodies for gravity interpretation. Geophys. J. Int., 42(2), 315–334. https://doi.org/10.1111/j.1365-246X.1975.tb05864.x

Poudjom-Djomani, Y. H. (1993). Apport de la Gravimetrie a l’Etude de la Lithosphere Continentale et Implications Geodynamiques [Thèse de Doctorat Ph.D.]. Etude d’un Bombement Intraplaque: Le Massif de l’Adamaoua (Cameroun). Universite de Paris-Sud.222

Poudjom-Djomani, Y. H., Diament, M., and Wilson, M. (1997). Lithospheric structure across the Adamawa plateau (Cameroon) from gravity studies. Tectonophysics, 273(3-4), 317–327. https://doi.org/10.1016/S0040-1951(96)00280-6

Radhakrishna, I. V., and Krishnamacharyulu, S. K. G. (1990). Polyfit: A Fortran 77 program to fit a polynomial of any order to potential field anomalies. J. Assoc. Expl. Geophys., 11(2), 99–105.

Soba, D., Michard, A., Toteu, S. F., Norman, D. I., Penaye, J., Ngako, V., Nzenti, J. P., and Dautel, D. (1991). Données géochronologiques nouvelles (Rb-Sr, U-Pb et Sm-Nd) sur la zone mobile pan-africaine de l’Est Cameroun: âge Protérozoïque supérieur de la série du Lom. Comptes Rendus de l’Académie des Sciences de Paris, 312, 1453–1458.

Tabod, C. T., Fairhead, J. D., Stuart, G. W., Ateba, B., and Ntepe, N. (1992). Seismicity of the Cameroon volcanic line, 1982–1990. Tectonophysics, 212(3–4), 303–320.222

Telford, W. M., Geldart, L. P., Sheriff, R. E., and Keys, D. A. (1990). Applied Geophysics (4th ed). Cambridge: Cambridge University Press.222

Temdjim, R. (1986). Le volcanisme de la région de Ngaoundéré (Adamaoua-Cameroun). Étude volcanologique et pétrographique. Université Clermont Ferrand.222

Temdjim, R. (2006). Contribution à la connaissance du manteau supérieur du Cameroun au travers de l’étude des enclaves ultrabasiques et basiques remontées par les volcans de Youkou (Adamaoua) et de Nyos (Ligne du Cameroun) [Thèse de Doctorat Ph.D.]. Univerité de Yaoundé 1.222

Wessel, P., and Smith, W. H. F. (1995). New version of GMT released. Trans. Am. Geophys. Union, 72, 445–446.

Zanga-Amougou, A., Ndougsa-Mbarga, T., Meying, A., Layu, D. Y., Bikoro-Bi-Alou M., and Manguelle-Dicoum, E. (2013). 2.5D modeling of crustal structures along the eastern Cameroon and western Central African Republic derived from finite element and spectral analysis methods. Geophysica, 49(1-2), 75–97.

[1]

QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu, 2022: Seismic attenuation compensation with spectral-shaping regularization, Earth and Planetary Physics, 6, 259-274. doi: 10.26464/epp2022024

[2]

Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

[3]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040

[4]

BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025

[5]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[6]

Quan-Zhi Ye, 2018: A preliminary analysis of the Shangri-La Bolide on 2017 Oct 4, Earth and Planetary Physics, , 170-172. doi: 10.26464/epp2018017

[7]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[8]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[9]

MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013

[10]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[11]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[12]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[13]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029

[14]

ShuCan Ge, HaiLong Li, Bin Xu, Tong Xu, Lin Meng, MaoYan Wang, Abdel Hannachi, MengYan Zhu, Lina Broman, Safi Ullah, Abdur Rauf, 2021: Characteristic analysis of layered PMSEs measured with different elevation angles at VHF based on an experimental case, Earth and Planetary Physics, 5, 42-51. doi: 10.26464/epp2021001

[15]

YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026

[16]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011

[17]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[18]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[19]

YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028

[20]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Interpretation of locally high gravity anomalies using terrestrial gravity data in Bagodo, North Cameroon

Apollinaire Bouba, Kasi Njeudjang, Loudi Yap, Bouba Saidou, Joseph Kamguia, Tabod Charles Tabod