Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Tang, S. W., Wang, Y., Zhao, H. Y., Fang, F., Qian, Y., Zhang, Y. J., Yang, H. B., Li, C. H., Fu, Q., Kong, J., Hu, X. Y., Su, H., Sun, Z. Y., Yu, Y. H., Zhang, B. M., Sun, Y., and Sun, Z. P. (2020). Calibration of Mars Energetic Particle Analyzer (MEPA). Earth Planet. Phys., 4(4), 355–363doi: 10.26464/epp2020055

2020, 4(4): 355-363. doi: 10.26464/epp2020055

PLANETARY SCIENCES

Calibration of Mars Energetic Particle Analyzer (MEPA)

1. 

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2. 

Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China

3. 

University of Chinese Academy of Sciences, Beijing 100049, China

4. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

5. 

National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author: ZhiYu Sun, sunzhy@impcas.ac.cnYuHong Yu, yuyuhong@impcas.ac.cn

Received Date: 2020-05-25
Web Publishing Date: 2020-07-31

The first Mars exploration mission of China (Tianwen-1) is scheduled to be launched in 2020; a charged particle telescope, the Mars Energetic Particle Analyzer (MEPA), is carried as one of the payloads on the orbiter. The MEPA is designed to measure solar energetic particles (SEPs) and galactic cosmic rays (GCRs) in the near-Mars space and in the transfer orbit from Earth to Mars. Before the launch, the MEPA was calibrated in ground experiments with radioactive sources, electronic pulses, and accelerator beams. The calibration parameters, such as energy conversion constants, threshold values for the triggers, and particle identification criteria, were determined and have been stored for onboard use. The validity of the calibration parameters has been verified with radioactive sources and beams. The calibration results indicate that the MEPA can measure charged particles reliably, as designed, and that it can satisfy the requirements of the Tianwen-1 mission.

Key words: Mars; Tianwen-1; MEPA; calibration

Birks, J. B. (1964). The Theory and Practice of Scintillation Counting (pp. 465). Oxford: Pergamon Press. https://doi.org/10.1016/C2013-0-01791-4222

Galford, J. E. (2017). A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility. Appl. Radiat. Isotopes, 122, 47–56. https://doi.org/10.1016/j.apradiso.2017.01.004

Golovko, V. V., Iacob, V. E., and Hardy, J. C. (2008). The use of Geant4 for simulations of a plastic β-detector and its application to efficiency calibration. Nucl. Instrum. Methods Phys. Res. Sect. A, 594(2), 266–272. https://doi.org/10.1016/j.nima.2008.06.025

Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., Blake, D. F., Conrad, P., Edgett, K. S., … Wiens, R. C. (2012). Mars science laboratory mission and science investigation. Space Sci. Rev., 170(1–4), 5–56. https://doi.org/10.1007/s11214-012-9892-2

Horn, D., Ball, G. C., Galindo-Uribarri, A., Hagberg, E., Walker, R. B., Laforest R., and Pouliot, J. (1992). The mass dependence of CsI(Tl) scintillation response to heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A, 320(1–2), 273–276. https://doi.org/10.1016/0168-9002(92)90785-3

IDEAS. 2020. Integrated Detector Electronics AS. http://www.ideas.no/.222

Jia, Y. Z., Fan, Y., and Zou, Y. L. (2018). Scientific objectives and payloads of Chinese first Mars exploration. Chin. J. Space Sci., 38(5), 650–655. https://doi.org/10.11728/cjss2018.05.650

Jiang, X. Q., Yang, B., and Li, S. (2018). Overview of China’s 2020 Mars mission design and navigation. Astrodynamics, 2(1), 1–11. https://doi.org/10.1007/s42064-017-0011-8

Le Neindre, N., Alderighi, M., Anzalone, A., Barnà, R., Bartolucci, M., Berceanu, I., Borderie, B., Bougault, R., Bruno, M., … Zipper, W. (2002). Mass and charge identification of fragments detected with the Chimera Silicon–CsI(Tl) telescopes. Nucl. Instrum. Methods Phys. Res. Sect. A, 490(1–2), 251–262. https://doi.org/10.1016/S0168-9002(02)01008-2

Megna, R. (2009). Monte Carlo simulation studies of the timing calibration accuracy required by the NEMO underwater neutrino telescope. Nucl. Instrum. Methods Phys. Res. Sect. A, 602(1), 80–83. https://doi.org/10.1016/j.nima.2008.12.008

Nielsen, E. (2004). Mars express and MARSIS. Space Sci. Rev., 111(1–2), 245–262. https://doi.org/10.1023/B:SPAC.0000032712.05204.5e

O’Neill, P. M. (2010). Badhwar-O’Neill 2010 galactic cosmic ray flux model—revised. IEEE Trans. Nucl. Sci., 57(6), 3148–3153. https://doi.org/10.1109/TNS.2010.2083688

Portree, D. S. F. (2001). Humans to Mars: fifty years of mission planning, 1950–2000. NASA SP-2001-4521.222

Reedy, R. C., and Howe, S. D. (1999). The Martian radiation environment from orbit and on the surface. In Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration. Houston: Lunar and Planetary Institute. https://hdl.handle.net/20.500.11753/896222

Saunders, R. S., Arvidson, R. E., Badhwar, G. D., Boynton, W. V., Christensen, P. R., Cucinotta, F. A., Feldman, W. C., Gibbs, R. G., Kloss, Jr. C., … Zeitlin, C. J. (2004). 2001 Mars odyssey mission summary. Space Sci. Rev., 110(1–2), 1–36. https://doi.org/10.1023/B:SPAC.0000021006.84299.18

Sun, Z., Zhan, W. L., Guo, Z. Y., Xiao, G., and Li, J. X. (2003). RIBLL, the radioactive ion beam line in Lanzhou. Nucl. Instrum. Methods Phys. Res. Sect. A, 503(3), 496–503. https://doi.org/10.1016/S0168-9002(03)01005-2

Tarasov, O. B., and Bazin, D. (2016). LISE++: Exotic beam production with fragment separators and their design. Nucl. Instrum. Methods Phys. Res. Sect. B, 376, 185–187. https://doi.org/10.1016/j.nimb.2016.03.021

Ye, P. J., Sun, Z. Z., Rao, W., and Meng L. Z. (2017). Mission overview and key technologies of the first Mars probe of China. Sci. China Technol. Sci., 60(5), 649–657. https://doi.org/10.1007/s11431-016-9035-5

Zhan, W. L., Xia, J. W., Zhao, H. W., Xiao, G. Q., Yuan, Y. J., Xu, H. S., Man, K. D., Yuan, P., Gao, D. Q., … HIRFL-CSR Group. (2008). HIRFL today. Nucl. Phys. A, 805(1–4), 533c–540c. https://doi.org/10.1016/j.nuclphysa.2008.02.292

[1]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[2]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[3]

YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057

[4]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[5]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[6]

Bin Zhou, ShaoXiang Shen, Wei Lu, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[7]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics. doi: 10.26464/epp2020064

[8]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[9]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[10]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[11]

GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056

[12]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[13]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[14]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[15]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[16]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[17]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[18]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[19]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[20]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Calibration of Mars Energetic Particle Analyzer (MEPA)

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun