Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Otsuka, Y., Shinbori, A., Sori, T., Tsugawa, T., Nishioka, M., and Huba, J. D. (2021). Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations. Earth Planet. Phys., 5(5), 427–434. http://doi.org/10.26464/epp2021046

2021, 5(5): 427-434. doi: 10.26464/epp2021046

SPACE PHYSICS: IONOSPHERIC PHYSICS

Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations

1. 

Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

2. 

National Institute of Information and Communications Technology, Tokyo, Japan

3. 

Syntek Technologies, Fairfax, VA, USA

Corresponding author: Yuichi Otsuka, otsuka@isee.nagoya-u.ac.jp

Received Date: 2021-05-07
Web Publishing Date: 2021-08-23

This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm. By analyzing GPS data collected in Japan, we investigate temporal variations in the horizontal two-dimensional distribution of total electron content (TEC) during the geomagnetic storm. The SYM-H index reached −142 nT around 08 UT on 28 May 2017. TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT (LT = UT + 9 hours) on 29 May 2017, when TEC rapidly increased at sunrise due to the solar extreme ultraviolet (EUV) radiation. The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions. At 06 LT on 29 May, when the plasma depletions first appeared over Japan, the background TEC was enhanced to approximately 17 TECU, and then decreased to approximately 80% of the TEC typical of magnetically quiet conditions. We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime. By using the Naval Research Laboratory: Sami2 is Another Model of the Ionosphere (SAMI2), we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance. Simulation shows that the plasma density increases at the time of plasma depletion appearance; subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime. The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere.

Key words: plasma bubble; GPS; ionosphere; ionospheric irregularity; SAMI2

Aa, E. C., Zou, S. S., Ridley, A., Zhang, S. R., Coster, A. J., Erickson, P. J., Liu, S. Q., and Ren, J. E. (2019). Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Wea., 17(2), 285–298. https://doi.org/10.1029/2018SW002101

Basu, S., Basu, S., Aarons, J., McClure, J. P., and Cousins, M. D. (1978). On the coexistence of kilometer- and meter-scale irregularities in the nighttime equatorial F region. J. Geophys. Res.: Space Phys., 83(A9), 4219–4226. https://doi.org/10.1029/JA083iA09p04219

Chau, J. L., and Woodman, R. F. (2001). Interferometric and dual beam observations of daytime Spread-F-like irregularities over Jicamarca. Geophys. Res. Lett., 28(18), 3581–3584. https://doi.org/10.1029/2001GL013404

Fejer, B. G., Gonzales, C. A., Farley, D. T., Kelley, M. C., and Woodman, R. F. (1979). Equatorial electric fields during magnetically disturbed conditions 1. The effect of the interplanetary magnetic field. J. Geophys. Res.: Space Phys., 84(A10), 5797–5802. https://doi.org/10.1029/JA084iA10p05797

Fejer, B. G., Larsen, M. F., and Farley, D. T. (1983). Equatorial disturbance dynamo electric fields. Geophys. Res. Lett., 10(7), 537–540. https://doi.org/10.1029/GL010i007p00537

Fukao, S., Ozawa, Y., Yamamoto, M., and Tsunoda, R. T. (2003). Altitude-extended equatorial spread F observed near sunrise terminator over Indonesia. Geophys. Res. Lett., 30(22), 2137. https://doi.org/10.1029/2003GL018383

Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., Vial, F., and Vincent, R. A. (1996). Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(13), 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0

Huang, C. S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., and Hairston, M. R. (2013). Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res.: Space Phys., 118(5), 2398–2408. https://doi.org/10.1002/jgra.50252

Huba, J. D., Joyce, G., and Fedder, J. A. (2000). Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model. J. Geophys. Res.: Space Phys., 105(A10), 23035–23053. https://doi.org/10.1029/2000JA000035

Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics, International Geophysics Series, vol. 96 (2nd ed). San Diego, California: Academic Press.222

Li, J. H., Ma, G. Y., Maruyama, T., and Li, Z. (2012). Mid-latitude ionospheric irregularities persisting into late morning during the magnetic storm on 19 March 2001. J. Geophys. Res.: Space Phys., 117(A8), A08304. https://doi.org/10.1029/2012JA017626

Liu, L., Zou, S. S., Yao, Y. B., and Aa, E. (2020). Multi-scale ionosphere responses to the May 2017 magnetic storm over the Asian sector. GPS Solut., 24(1), 26. https://doi.org/10.1007/s10291-019-0940-1

Nishioka, M., Saito, A., and Tsugawa, T. (2008). Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J. Geophys. Res.: Space Phys., 113(A5), A05301. https://doi.org/10.1029/2007JA012605

Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002a). Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett., 29(15), 43–1. https://doi.org/10.1029/2002GL015347

Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., and Miyazaki, S. (2002b). A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space, 54(1), 63–70. https://doi.org/10.1186/BF03352422

Oya, H., Takahashi, T., and Watanabe, S. (1986). Observation of low latitude ionosphere by the impedance probe on board the Hinotori satellite. J. Geomag. Geoelectr., 38(2), 111–123. https://doi.org/10.5636/jgg.38.111

Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett., 24(18), 2283–2286. https://doi.org/10.1029/97GL02273

Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res.: Space Phys., 107(A12), SIA 15-1–SIA 15-16. https://doi.org/10.1029/2002JA009430

Richards, P. G., Fennelly, J. A., and Torr, D. G. (1994). EUVAC: A solar EUV Flux Model for aeronomic calculations. J. Geophys. Res.: Space Phys., 99(A5), 8981–8992. https://doi.org/10.1029/94JA00518

Saito, A., Fukao, S., and Miyazaki, S. (1998). High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys. Res. Lett., 25(16), 3079–3082. https://doi.org/10.1029/98GL52361

Watanabe, S., and Oya, H. (1986). Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the Hinotori satellite. J. Geomag. Geoelectr., 38(2), 125–149. https://doi.org/10.5636/jgg.38.125

SI4264-Otsuka.gif

[1]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[2]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[3]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[4]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[5]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[6]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[7]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[8]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[9]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[10]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[11]

Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010

[12]

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063

[13]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[14]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[15]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

[16]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[17]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[18]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[19]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[20]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba