Citation:
Zhang, W., Tang, M., and Niu, Z. W. (2022). The anisotropy of hexagonal close-packed iron under inner core conditions: the effect of light elements. Earth Planet. Phys., 6(4), 399–423. http://doi.org/10.26464/epp2022035
2022, 6(4): 399-423. doi: 10.26464/epp2022035
The anisotropy of hexagonal close-packed iron under inner core conditions: the effect of light elements
1. | Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang Sichuan 621010, China |
2. | Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang Sichuan 621010, China |
3. | School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang Sichuan 621010, China |
In recent decades, global seismic observations have identified increasingly complex anisotropy of the Earth’s inner core. Numerous seismic studies have confirmed hemispherical variations in the inner core’s anisotropy. Here, based on ab initio molecular dynamics calculations, we report how the anisotropy of hexagonal close-packed (hcp)-iron, under inner core conditions, could be altered when alloyed with light elements. We find that light elements in binary allows with iron — hcp-Fe-X (X = C, O, Si, and S) — could have significant effects on density, sound velocities, and anisotropy, compared with the behavior of pure hcp-iron; the anisotropy of these binary alloys depends on combined effects of temperature and the particular alloying light element. Furthermore, the change in anisotropy strength with increasing temperature can be charted for each alloy. Alloying pure iron with some light elements such as C or O actually does not increase but decreases core anisotropy at high temperatures. But the light element S can significantly enhance the elastic anisotropy strength of hcp-Fe.
Alfè, D., Gillan, M. J., and Price, G. D. (2000). Constraints on the composition of the Earth’s core from ab initio calculations. Nature, 405(6783), 172–175. https://doi.org/10.1038/35012056 |
Asanuma, H., Ohtani, E., Sakai, T., Terasaki, H., Kamada, S., Hirao, N., and Ohishi, Y. (2011). Static compression of Fe0.83Ni0.09Si0.08 alloy to 374 GPa and Fe0.93Si0.07 alloy to 252 GPa: Implications for the Earth’s inner core. Earth Planet. Sci. Lett., 310(1-2), 113–118. https://doi.org/10.1016/j.jpgl.2011.06.034 |
Bazhanova, Z. G., Roizen, V. V., and Oganov, A. R. (2017). High-pressure behavior of the Fe-S system and composition of the earth’s inner core. Phys.-Usp., 60(10), 1025–1032. https://doi.org/10.3367/UFNe.2017.03.038079 |
Beghein, C., and Trampert, J. (2003). Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299(5606), 552–555. https://doi.org/10.1126/science.1078159 |
Belonoshko, A. B., Ahuja, R., and Johansson, B. (2003). Stability of the body-centred-cubic phase of iron in the earth's inner core. Nature, 424(6952), 1032–1034. https://doi.org/10.1038/nature01954 |
Belonoshko, A. B., Li, S., Ahuja, R., and Johansson, B. (2004). High-pressure crystal structure studies of Fe, Ru and Os. J. Phys. Chem. Solids, 65(8-9), 1565–1571. https://doi.org/10.1016/j.jpcs.2003.11.043 |
Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., and Johansson, B. (2007). Origin of the low rigidity of the earth’s inner core. Science, 316(5831), 1603–1605. https://doi.org/10.1126/science.1141374 |
Belonoshko, A. B., Lukinov, T., Fu, J., Zhao, J. J., Davis, S., and Simak, S. I. (2017). Stabilization of body-centred cubic iron under inner-core conditions. Nat. Geosci., 10(4), 312–316. https://doi.org/10.1038/ngeo2892 |
Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B, 50(24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953 |
Buffett, B. A., and Wenk, H. R. (2001). Texturing of the Earth’s inner core by Maxwell stresses. Nature, 413(6851), 60–63. https://doi.org/10.1038/35092543 |
Creager, K. C. (1992). Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature, 356(6367), 309–314. https://doi.org/10.1038/356309a0 |
Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 |
Fischer, R. A., Campbell, A. J., Reaman, D. M., Miller, N. A., Heinz, D. L., Dera, P., and Prakapenka, V. B. (2013). Phase relations in the Fe–FeSi system at high pressures and temperatures. Earth Planet. Sci. Lett., 373, 54–64. https://doi.org/10.1016/j.jpgl.2013.04.035 |
Fischer, R. A., Campbell, A. J., Caracas, R., Reaman, D. M., Heinz, D. L., Dera, P., and Prakapenka, V. B. (2014). Equations of state in the Fe-FeSi system at high pressures and temperatures. J. Geophys. Res., 119(4), 2810–2827. https://doi.org/10.1002/2013jb010898 |
Flyvbjerg, H., and Petersen, H. G. (1989). Error estimates on averages of correlated data. J. Chem. Phys., 91(1), 461–466. https://doi.org/10.1063/1.457480 |
Ganz, E., Ganz, A. B., Yang, L. M., and Dornfeld, M. (2017). The initial stages of melting of graphene Between 4000 K and 6000 K. Phys. Chem. Chem. Phys., 19(5), 3756–3762. https://doi.org/10.1039/C6CP06940A |
Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A, 65(5), 349-354.222 |
Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., and Labrosse, S. (2017). Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543(7643), 99–102. https://doi.org/10.1038/nature21367 |
Huang, H. J., Fei, Y. W., Cai, L. C., Jing, F. Q., Hu, X. J., Xie, H. S., Zhang, L. M., and Gong, Z. Z (2011). Evidence for an oxygen-depleted liquid outer core of the Earth. Nature, 479(7374), 513-516.222 |
Jeanloz, R., and Wenk, H. R. (1988). Convection and anisotropy of the inner core. Geophys. Res. Lett., 15(1), 72–75. https://doi.org/10.1029/GL015i001p00072 |
Kresse, G., and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 11169–11186. https://doi.org/10.1103/physrevb.54.11169 |
Kresse, G., and Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 |
Page, L. Y., and Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B, 65(10), 104104. https://doi.org/10.1103/PhysRevB.65.104104 |
Li, Y. G., Vočadlo, L., Brodholt, J., and Wood, I. G. (2016). Thermoelasticity of Fe7C3 under inner core conditions. J. Geophys. Res., 121(8), 5828–5837. https://doi.org/10.1002/2016JB013155 |
Li, Y. G., Vočadlo, L., and Brodholt, J. P. (2018). The elastic properties of hcp-Fe alloys under the conditions of the Earth’s inner core. Earth Planet. Sci. Lett., 493, 118–127. https://doi.org/10.1016/j.jpgl.2018.04.013 |
Lin, J. F., Campbell, A. J., Heinz, D. L., and Shen, G. Y. (2003). Static compression of iron-silicon alloys: Implications for silicon in the Earth’s core. J. Geophys. Res., 108(B1), 2045. https://doi.org/10.1029/2002JB001978 |
Lincot, A., Merkel, S., and Cardin, P. (2015). Is inner core seismic anisotropy a marker for plastic flow of cubic iron?. Geophys. Res. Lett., 42(5), 1326–1333. https://doi.org/10.1002/2014GL062862 |
Lythgoe, K. H., Deuss, A., Rudge, J. F., and Neufeld, J. A. (2014). Earth’s inner core: Innermost inner core or hemispherical variations?. Earth Planet. Sci. Lett., 385, 181–189. https://doi.org/10.1016/j.jpgl.2013.10.049 |
Mao, H. K., Shu, J. F., Shen, G. Y., Hemley, R. J., Li, B. S., and Singh, A. K. (1998). Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature, 396(6713), 741–743. https://doi.org/10.1038/25506 |
Mao, H. K., Xu, J., Struzhkin, V. V., Shu, J., Hemley, R. J., Sturhahn, W., Hu, M. Y., Alp, E. E., Vocadlo, L., Wortmann, G. (2001). Phonon density of states of iron up to 153 gigapascals. Science, 292(5518), 914–916. https://doi.org/10.1126/science.1057670 |
Martorell, B., Brodholt, J., Wood, I. G., and Vočadlo, L. (2013a). The effect of nickel on the properties of iron at the conditions of Earth’s inner core: ab initio calculations of seismic wave velocities of Fe–Ni alloys. Earth Planet. Sci. Lett., 365, 143–151. https://doi.org/10.1016/j.jpgl.2013.01.007 |
Martorell, B., Vočadlo, L., Brodholt, J., and Wood, I. G. (2013b). Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions. Science, 342(6157), 466–468. https://doi.org/10.1126/science.1243651 |
Martorell, B., Wood, I. G., Brodholt, J., and Vočadlo, L. (2016). The elastic properties of hcp-Fe1−xSix at Earth’s inner-core conditions. Earth Planet. Sci. Lett., 451, 89–96. https://doi.org/10.1016/j.jpgl.2016.07.018 |
Mattesini, M., Belonoshko, A. B., Buforn, E., Ramírez, M., Simak, S. I., Udías, A., Mao, H. K., and Ahuja, R. (2010). Hemispherical anisotropic patterns of the Earth’s inner core. Proc. Nat. Acad. Sci. USA, 107(21), 9507–9512. https://doi.org/10.1073/pnas.1004856107 |
Merkel, S., Liermann, H. P., Miyagi, L., and Wenk, H. R. (2013). In situ radial X-ray diffraction study of texture and stress during phase transformations in bcc-, fcc- and hcp-iron up to 36 GPa and 1000 K. Acta Mater., 61(14), 5144–5151. https://doi.org/10.1016/j.actamat.2013.04.068 |
Mermin, N. D. (1965). Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137(5A), A1441–A1443. https://doi.org/10.1103/PhysRev.137.A1441 |
Moakher, M., and Norris, A. N. (2006). The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast., 85(3), 215–263. https://doi.org/10.1007/s10659-006-9082-0 |
Morelli, A., Dziewonski, A. M., and Woodhouse, J. H. (1986). Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett., 13(13), 1545–1548. https://doi.org/10.1029/GL013i013p01545 |
Morrison, R. A., Jackson, J. M., Sturhahn, W., Zhang, D. Z., and Greenberg, E. (2018). Equations of State and Anisotropy of Fe-Ni-Si Alloys. J. Geophys. Res., 123(6), 4647–4675. https://doi.org/10.1029/2017JB015343 |
Niu, F. L., and Wen, L. X. (2002). Seismic anisotropy in the top 400 km of the inner core beneath the ‘‘eastern” hemisphere. Geophys. Res. Lett., 29(12), 1611. https://doi.org/10.1029/2001GL014118 |
Niu, Z. W., Zeng, Z. Y., Cai, L. C., and Chen, X. R. (2015). Study of the thermodynamic stability of iron at inner core from first-principles theory combined with lattice dynamics. Phys. Earth Planet. Inter., 248, 12–19. https://doi.org/10.1016/j.pepi.2015.09.002 |
Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52(2), 255–268. https://doi.org/10.1080/00268978400101201 |
Panda, K. B., and Chandran, K. S. R. (2006). Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comp. Mater. Sci., 35(2), 134–150. https://doi.org/10.1016/j.commatsci.2005.03.012 |
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 |
Reuss, A., and Angew, Z. (1929). Berechnung del fliessgrenze von misch-kristallen auf grund der plastizitatbedingung for einkristalle. Math. Mech., 9(1), 49–58. |
Romanowicz, B., Cao, A. M., Godwal, B., Wenk, R., Ventosa, S., and Jeanloz, R. (2016). Seismic anisotropy in the Earth’s innermost inner core: testing structural models against mineral physics predictions. Geophys. Res. Lett., 43(1), 93–100. https://doi.org/10.1002/2015gl066734 |
Romanowicz, B., and Wenk, H. R. (2017). Anisotropy in the deep Earth. Phys. Earth Planet. Inter., 269, 58–90. https://doi.org/10.1016/j.pepi.2017.05.005 |
Sakai, T., Takahashi, S., Nishitani, N., Mashino, I., Ohtani, E., and Hirao, N. (2014). Equation of state of pure iron and Fe0.9Ni0.1 alloy up to 3 Mbar. Phys. Earth Planet. Inter., 228, 114–126. https://doi.org/10.1016/j.pepi.2013.12.010 |
Sha, X. W., and Cohen, R. E. (2006). Thermal effects on lattice strain in ε-Fe under pressure. Phys. Rev. B, 74, 064103. https://doi.org/10.1103/PhysRevB.74.064103 |
Sha, X. W., and Cohen, R. E. (2010a). First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures. Phys. Rev. B, 81(9), 094105. https://doi.org/10.1103/PhysRevB.81.094105 |
Sha, X. W., and Cohen, R. E. (2010b). Elastic isotropy of ε-Fe under earth’s core conditions. Geophys. Res. Lett., 37(10), L10302. https://doi.org/10.1029/2009GL042224 |
Steinle-Neumann, G., Stixrude, L., and Cohen, R. E. (1999). First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B, 60(2), 791–799. https://doi.org/10.1103/physrevb.60.791 |
Sumita, I., and Bergman, M. I. (2007). Inner-core dynamics. Treat. Geophys., 8, 299–318. https://doi.org/10.1016/B978-044452748-6.00132-2 |
Sun, T., Brodholt, J. P., Li, Y. G., and Vočadlo, L. (2018). Melting properties from ab initio free energy calculations: Iron at the Earth's inner-core boundary. Phys. Rev. B, 98(22), 224301. https://doi.org/10.1103/PhysRevB.98.224301 |
Tateno, S., Hirose, K., Ohishi, Y., and Tatsumi, Y. (2010). The structure of iron in earth’s inner core. Science, 330(6002), 359–361. https://doi.org/10.1126/science.1194662 |
Tateno, S., Hirose, K., Komabayashi, T., Ozawa, H., and Ohishi, Y. (2012). The structure of Fe-Ni alloy in Earth’s inner core. Geophys. Res. Lett., 39(12), L12305. https://doi.org/10.1029/2012GL052103 |
Tkalčić, H. (2015). Complex inner core of the Earth: the last frontier of global seismology. Rev. Geophys., 53(1), 59–94. https://doi.org/10.1002/2014RG000469 |
Vočadlo, L., Alfè, D., Gillan, M. J., and Price, G. D. (2003). The properties of iron under core conditions from first principles calculations. Phys. Earth Planet. Inter., 140(1-3), 101–125. https://doi.org/10.1016/j.pepi.2003.08.001 |
Vočadlo, L. (2007). Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core?. Earth Planet. Sci. Lett., 254(1-2), 227–232. https://doi.org/10.1016/j.jpgl.2006.09.046 |
Vočadlo, L., Dobson, D. P., and Wood, I. G. (2009). Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett., 288(3-4), 534–538. https://doi.org/10.1016/j.jpgl.2009.10.015 |
Voigt, W. (1928). Lehrbuch der Kristallphysik: Teubner-Leipzig. New York: Macmillan.222 |
Wang, T., Song, X. D., and Xia, H. H. (2015). Equatorial anisotropy in the inner part of earth’s inner core from autocorrelation of earthquake coda. Nat. Geosci., 8(3), 224–227. https://doi.org/10.1038/ngeo2354 |
Wenk, H. R., Baumgardner, J. R., Lebensohn, R. A., and Tomé, C. N. (2000). A convection model to explain anisotropy of the inner core. J. Geophys. Res., 105(B3), 5663–5677. https://doi.org/10.1029/1999jb900346 |
Woodhouse, J. H., Giardini, D., and Li, X. D. (1986). Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett., 13(13), 1549–1552. https://doi.org/10.1029/gl013i013p01549 |
[1] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[2] |
Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034 |
[3] |
Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032 |
[4] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036 |
[5] |
ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics, 6, 191-203. doi: 10.26464/epp2022016 |
[6] |
BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)