Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wei Zhang, Mei Tang, ZhenWei Niu, 2022: The anisotropy of hcp iron under inner core conditions: the effect of light elements, Earth and Planetary Physics. http://doi.org/10.26464/epp2022035

doi: 10.26464/epp2022035

The anisotropy of hcp iron under inner core conditions: the effect of light elements

1 Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;

2 Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China;

3 School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China

Corresponding author: ZhenWei Niu,

Fund Project: The authors are grateful to the editors and reviewers for their valuable comments, which helped to improve the original manuscript. This work is supported by the National Natural Science Foundation of China (Grant Nos. 41704088 and 11804284), the Open Foundation of Hypervelocity Impact Research Center of CARDC (Grant No. 20200202). The thermoelastic data used are listed in the Supporting Information (SI) and references.

In the last decades, global seismic observations have identified increasingly complex anisotropy of the Earth’s inner core. Plenty of seismic studies have confirmed the anisotropy presents hemispherical variations in inner core. Here we report the effect of light elements on the anisotropy of hcp iron under inner core conditions based on ab initio molecular dynamics calculations. We found that light elements have significant effects on the density, sound velocities, and the anisotropy of hcp-Fe-X (X = C, O, Si, and S) binary alloy. For these binary alloys, the anisotropy depends on combined effects of temperature and the type of light element. Furthermore, there is a certain increase of the anisotropy strength with the increasing temperature. Alloying iron with some light elements such as C or O actually does not improve but reduces the strength of anisotropy of pure iron at high temperatures. Oppositely, light element S can significantly enhance the elastic anisotropy strength of hcp-Fe.

Key words: iron, elastic constants, anisotropy, inner core

Alfè, D., Gillan, M. J., and Price, G. D. (2000). Constraints on the composition of the Earth’s core from ab initio calculations. Nature, 405, 172-175. https://doi.org/10.1038/35012056 Asanuma, H., Ohtani, E., Sakai, T., Terasaki, H., Kamada, S., Hirao, N., and Ohishi, Y. (2011). Static compression of Fe0.83Ni0.09Si0.08 alloy to 374 GPa and Fe0.93Si0.07 alloy to 252 GPa: Implications for the Earth’s inner core. Earth Planet. Sci. Lett., 310, 113-118. https://doi.org/10.1016/j.epsl.2011.06.034 Bazhanova, Z.G., Roizen, V. V., Oganov, A. R. (2017). High-pressure behavior of the Fe-S system and composition of the earth’s inner core. Physics-Uspekhi, 60(10), 1025-1032. https://doi.org/10.3367/UFNe.2017.03.038079 Beghein, C., and Trampert, J. (2003). Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299, 552-555. https://doi.org/10.1126/science.1078159 Belonoshko, A. B., Ahuga, R., and Johansson, B. (2003). Stability of the body-centred-cubic phase of iron in the Earth's inner core. Nature, 424, 1032-1034. https://doi.org/10.1038/nature01954 Belonoshko, A. B., Li, S., Ahuga, R., and Johansson, B. (2004). High-pressure crystal structure studies of Fe, Ru and Os. J. Phys. Chem. Solids, 65, 1565-1571. https://doi.org/10.1016/j.jpcs.2003.11.043 Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., and Johansson, B. (2007). Origin of the low rigidity of the Earth’s inner core. Science, 316, 1603-1605. https://doi.org/10.1126/science.1141374 Belonoshko, A. B., Lukinov, T., Fu, J., Zhao, J. J., Davis, S., and Simak, S. I. (2017). Stabilization of body-centred cubic iron under inner-core conditions. Nature Geoscience, 10, 312-316. https://doi.org/10.1038/ngeo2892. Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B, 50(24), 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953 Buffett, B. A., and Wenk, H. R. (2001). Texturing of the Earth’s inner core by Maxwell stresses. Nature, 413, 60-63. https://doi.org/10.1038/35092543 Creager, K. C. (1992). Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature, 356, 309-314. https://doi.org/10.1038/356309a0 Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297-356. https://doi.org/10.1016/0031-9201(81)90046-7 Fischer, R. A., Campbell, A. J., Caracas, R., Reaman, D. M., Heinz, D. L., Dera, P., and Prakapenka, V. (2014). Equations of state in the Fe-FeSi system at high pressures and temperatures. J. Geophys. Res.: Solid Earth, 119, 2810-2827. https://doi.org/10.1002/2013jb010898 Flyvbjerg, H., and Petersen, H. G. (1989). Error estimates on averages of correlated data. J. Chem. Phys., 91, 461-466. https://doi.org/10.1063/1.457480 Ganz, E., Ganz, A.B., Yang, L.M., and Dornfeld, M. (2017). The Initial Stages of Melting of Graphene Between 4000 K and 6000 K. Phys. Chem. Chem. Phys., 19, 3756-3762. https://doi.org/10.1039/C6CP06940A Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate, Proceedings of the Physical Society, Section A, 65, 349. https://doi.org/10.1088/0370-1298/65/5/307 Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., and Labrosse, S. (2017). Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543, 99-102. https://doi.org/10.1038/nature21367 Hrubiak, R., Meng Y., and Shen G. Y. (2018). Experimental evidence of a body centered cubic iron at the Earth’s core condition. https://arxiv.org/ftp/arxiv/papers/1804/1804.05109.pdf Huang, H. J., Fei, Y. W., Cai, L. C., Jing, F. Q., Hu, X. J., Xie, H. S., Zhang, L. M., and Gong, Z. Z (2011). Evidence for all oxygen-depleted liquid outer core ofthe Earth. Nature, 479, 513-516. https://doi.org/10.1038/nature10621 Jeanloz, R., and Wenk, H. -R. (1988). Convection and anisotropy of the inner core. Geophys. Res. Lett., 15, 72-75, https://doi.org/10.1029/GL015i001p00072 Kresse, G., and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 11169-11186. https://doi.org/10.1103/physrevb.54.11169 Kresse, G., and Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59(3), 1758-1775. https://doi.org/10.1103/PhysRevB.59.1758 Lincot, A., Merkel, S., and Cardin, P. (2015). Is inner core seismic anisotropy a marker for plastic flow of cubic iron? Geophys. Res. Lett., 42, 1326-1333. https://doi.org/10.1002/2014GL062862 Li, Y., Vočadlo, L., Brodholt, J., and Wood, I. (2016). Thermoelasticity of Fe7C3 under inner core conditions. J. Geophys. Res.: Solid Earth, 121, 5828-5837. https://doi.org/10.1002/2016JB013155 Li, Y., Vočadlo, L., and Brodholt, J. (2018). The elastic properties of hcp-Fe alloys under the conditions of the Earth’s inner core. Earth Planet. Sci. Lett., 493, 118-127. https://doi.org/10.1016/j.epsl.2018.04.013 Lin, J. F., Campbell, A. J., and Heinz, D. L. (2003). Static compression of iron-silicon alloys: Implications for silicon in the Earth’s core. J. Geophys. Res., 108, B2045. https://doi.org/10.1029/2002JB001978 Lythgoe, K. H., Deuss, A., Rudge, J. F., and Neufeld, J. A. (2014). Earth’s inner core: Innermost inner core or hemispherical variations? Earth Planet. Sci. Lett., 385, 181-189. https://doi.org/10.1016/j.epsl.2013.10.049 Mao, H. K., Shu, J. F., Shen, G. Y., Hemley, R. J., Li, B. S., and Singh, A. K. (1998). Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature, 396, 741-743. https://doi.org/10.1038/25506. Mao, H. K., Xu, J., Struzhkin, V. V., Shu, J., Hemley, R. J., Sturhahn, W., et al., (2001). Phonon density of states of iron up to 153 gigapascals. Science, 292(5518), 914-916. https://doi.org/10.1126/science.1057670 Martorell, B., Brodholt, J., Wood, I. G., and Vočadlo, L. (2013a). The effect of nickel on the properties of iron at the conditions of Earth’s inner core: ab initio calculations of seismic wave velocities of Fe–Ni alloys. Earth Planet. Sci. Lett., 365, 143-151. https://doi.org/10.1016/j.epsl.2013.01.007. Martorell, B., Vočadlo, L., Brodholt, J., and Wood, I. G. (2013b). Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions. Science, 342, 466-468. https://doi.org/10.1126/science.1243651. Mattesini, M., Belonoshko. A. B., Buforn, E., Ramirez, M., Simak, S. I., Udias, A., Mao, H.-K., and Ahuja, R. (2010). Hemispherical anisotropic patterns of the Earth’s inner core. Proc. Nat. Acad. Sci. 107, 9507-9512. https://doi.org/10.1073/pnas.1004856107 Mermin, N.D. (1965). Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev. 137, A1441-1443. https://doi.org/10.1103/PhysRev.137.A1441 Merkel, S., Liermann, H. P., Miyagi, L., and Wenk, H. -R. (2013). In-situ radial X-ray diffraction study of texture and stress during phase transformations in bcc-, fcc-, and hcp-iron up to 36 GPa and 1000K. Acta Mater., 61, 5144-5151. https://doi.org/10.1016/j.actamat.2013.04.068 Moakher, M., and Norris, A. N. (2006). The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast., 85, 215-263. https://doi.org/10.1007/s10659-006-9082-0 Morelli, A., Dziewonski, A. M., Woodhouse, J. H. (1986). Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett., 13, 1545-1548. https://doi.org/10.1029/GL013i013p01545 Morrison, R. A., Jackson, J. M., Sturhhahn. W., Zhang, D. Z., and Greenberg, E. (2018). Equations of State and Anisotropy of Fe-Ni-Si Alloys. J. Geophys. Res.: Solid Earth, 123, 4647–4675. https://doi.org/10.1029/2017JB015343 Niu, F., and Wen, L. (2002). Seismic anisotropy in the top 400 km of the inner core beneath the ‘‘eastern” hemisphere. Geophys. Res. Lett., 29 (12), 1611. https://doi.org/10.1029/2001GL014118 Niu, Z. W., Zeng, Z. Y., Cai, L. C., and Chen, X. R. (2015). Study of the thermodynamic stability of iron at inner core from first-principles theory combined with lattice dynamics. Phys. Earth Planet. Inter., 248, 12-19. https://doi.org/10.1016/j.pepi.2015.09.002 Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52(2), 255-268. https://doi.org/10.1080/00268978400101201 Page, Y. L., and Saxe, P. (2002). Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials From ab Initio Calculations of Stress. Phys. Rev. B, 65(10), 104104. https://doi.org/ 10.1103/PhysRevB.65.104104 Panda, K. B., and Chandran, K. S. R. (2006). Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comp. Mater, Sci., 35(2), 134-150. https://doi.org/ 10.1016/j.commatsci.2005.03.012. Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/ 10.1103/PhysRevLett.77.3865 Reuss, A., and Angew, Z. (1929). Berechnung del fliessgrenze von misch-kristallen auf grund der plastizitat bedingung for einkristalle, Math. Mech., 9(1), 49-58. Romanowicz, B., Cao, A., Godwal, B., Wenk, R., Ventosa, S., and Jeanloz, R. (2016). Seismic anisotropy in the Earth’s innermost inner core: testing structural models against mineral physics predictions. Geophys. Res. Lett., 43, 93-100. https://doi.org/10.1002/2015gl066734 Romanowicz, B., and Wenk, R. (2017). Anisotropy in the deep Earth. Phys. Earth Planet. Inter. 269, 58-90, https://doi.org/10.1016/j.pepi.2017.05.005 Sun, T., Brodholt, J. P., Li, Y-G., and Vocadlo, L. (2018). Melting properties from ab initio free energy calculations: Iron at the Earth's inner-core boundary, Phys. Rev. B, 98, 224301. https://doi.org/10.1103/PhysRevB.98.224301 Sakai, T., Takahashi, S., Nishitani, N., Mashino, I., Ohtani, E., and Hirao, N. (2014). Equation of state of pure iron and Fe0.9Ni0.1 alloy up to 3 Mbar. Phys. Earth Planet. Inter., 228, 114-126. https://doi.org/10.1016/j.pepi.2013.12.010 Sha, X. W., and Cohen, R. E. (2006). Thermal effects on lattice strain in ε-Fe under pressure. Phys. Rev. B, 74, 064103. https://doi.org/10.1103/PhysRevB.74.064103 Sha, X. W., and Cohen, R. E. (2010a). First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures. Phys. Rev. B, 81, 094105. https://doi.org/10.1103/PhysRevB.81.094105 Sha, X. W., and Cohen, R. E. (2010b). Elastic isotropy of ε-Fe under Earth’s core conditions. Geophys. Res. Lett., 37 (L10302), 1-5. https://doi.org/10.1029/2009GL042224 Sumita, I., and Bergman, M. I. (2015). Inner-core dynamics. In: Treatise on Geophysics, vol. 8 (chap 8.10). Steinle-Neumann, G.., Stixrude, L., and Cohen, R. E. (1999). First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B, 60(2), 791-799. https://doi.org/10.1103/physrevb.60.791 Tateno, S., Hirose, K., Ohishi, Y., and Tatsumi, Y. (2010). The structure of iron in Earth’s inner core. Science, 330, 359-361. https://doi.org/10.1126/science.1194662. Tateno, S., Hirose, K., Komabayashi, T., Ozawa, H., and Ohishi, Y. (2012). The structure of Fe-Ni alloy in Earth’s inner core. Geophys. Res. Lett., 39 (L12305), 1-4. https://doi.org/10.1029/2012GL052103 Tkalčić, H. (2015). Complex inner core of the Earth: the last frontier of global seismology. Rev. Geophys., 53, 59-94. https://doi.org/10.1002/2014RG000469 Vočadlo, L., Alfè, D., Gillan, M. J., and Price, G. D. (2003). The properties of iron under core conditions from first principles calculations. Phys. Earth Planet. Inter., 140, 101-125. https://doi.org/10.1016/j.pepi.2003.08.001 Vočadlo, L. (2007). Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core? Earth Planet. Sci. Lett., 254, 227-232. https://doi.org/10.1016/j.epsl.2006.09.046 Vočadlo, L., Dobson, D. P., and Wood, I. G. (2009). Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner- core pressure. Earth Planet. Sci. Lett., 288, 534-538. https://doi.org/10.1016/j.epsl.2009.10.015 Voigt,W., Lehrbuch der Kristallphysik (Taubner-Leipzig, New York: Macmillan, 1928). Wang, T., Song, X., and Xia, H. H. (2015). Equatorial anisotropy in the inner part of the Earth’s inner core from autocorrelation of earthquake coda. Nature Geosci., 8, 224-227. https://doi.org/10.1038/ngeo2354 Wenk, H. -R., Baumgardner, J., Lebensohn, R., and Tomé, C. (2000). A convection model to explain anisotropy of the inner core. J. Geophys. Res., 105, 5663-5677. https://doi.org/10.1029/1999jb900346 Woodhouse, J. H., Giardini, D., Li, X. -D. (1986). Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett., 13, 1549-1552. https://doi.org/10.1029/gl013i013p01549 Wu, X., Vanderbilt, D., and Hamann, D. R. (2005). Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory. Phys. Rev. B, 72, 035105. https://doi.org/10.1103/PhysRevB.72.035105

[1]

QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics. doi: 10.26464/epp2022036

[2]

Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics. doi: 10.26464/epp2022032

[3]

ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics, 6, 191-203. doi: 10.26464/epp2022016

[4]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The anisotropy of hcp iron under inner core conditions: the effect of light elements

Wei Zhang, Mei Tang, ZhenWei Niu