Citation:
Duan, H. R., Guo, J. G., Chen, L. K., Jiao, J. S., and Jian, H. T. (2022). Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data. Earth Planet. Phys., 6(4), 366–377. http://doi.org/10.26464/epp2022034
2022, 6(4): 366-377. doi: 10.26464/epp2022034
Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data
1. | College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China |
2. | College of Sciences, Guangdong University of Petrochemical Technology, Maoming Guangdong 525000, China |
3. | School of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China |
4. | State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China |
5. | School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China |
The uplift of the Qinghai–Tibet Plateau (TP) strongly influences climate change, both regionally and globally. Surface observation data from this region have limited coverage and are difficult to obtain. Consequently, the vertical crustal deformation velocity (VCDV) distribution of the TP is poorly constrained. In this study, the VCDV from the TP was inverted by using data from the gravity recovery and climate experiment (GRACE). We were able to obtain the vertical crustal movement by deducting the hydrological factors, based on the assumption that the gravity signal detected by GRACE is mainly composed of hydrological factors and vertical crustal movement. From the vertical crustal movement, we inverted the distribution of the VCDV across the TP. The results showed that the VCDV of the southern, eastern, and northern TP is ~1.1 mm/a, ~0.5 mm/a, and −0.1 mm/a, respectively, whereas that of the region between the Qilian Haiyuan Fault and the Kunlun Fault is ~0.0 mm/a. These results are consistent with the distribution of crustal deformation, thrust earthquakes and faults, and regional lithospheric activity. The hydrology, crustal thickness, and topographic factors did not change the overall distribution of the VCDV across the TP. The influence of hydrological factors is marked, with the maximum differences being approximately −0.4 mm/a in the northwest and 1.0 mm/a in the central area. The results of this study are significant for understanding the kinematics of the TP.
An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411(6833), 62–66. https://doi.org/10.1038/35075035 |
Baranov, A., Bagherbandi, M., and Tenzer, R. (2018). Combined gravimetric-seismic Moho model of Tibet. Geosciences, 8(12), 461. https://doi.org/10.3390/geosciences8120461 |
Braitenberg, C., Zadro, M., Fang, J., Wang, Y., and Hsu, H. T. (2000). The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J. Geodyn., 30(5), 489–505. https://doi.org/10.1016/S0264-3707(00)00004-1 |
Chen, J. L., Wilson, C. R., Tapley, B. D., Longuevergne, L., Yang, Z. L., and Scanlon, B. R. (2010). Recent La Plata basin drought conditions observed by satellite gravimetry. J. Geophys. Res., 115(D22), D22108. https://doi.org/10.1029/2010JD014689 |
Chen, J. L., Wilson, C. R., Li, J., and Zhang, Z. Z. (2015). Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica. J. Geod., 89(9), 925–940. https://doi.org/10.1007/s00190-015-0824-2 |
Chen, M., Niu, F. L., Tromp, J., Lenardic, A., Lee, C. T. A., Cao, W. R., and Ribeiro, J. (2017). Lithospheric foundering and underthrusting imaged beneath Tibet. Nat. Commun., 8, 15659. https://doi.org/10.1038/ncomms15659 |
Chen, W. J., and Tenzer, R. (2017). Moho modeling in spatial domain: a case study under Tibet. Adv. Space Res., 59(12), 2855–2869. https://doi.org/10.1016/j.asr.2017.03.015 |
Dai, F. C., Xu, C., Yao, X., Xu, L., Tu, X. B., and Gong, Q. M. (2011). Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci., 40(4), 883–895. https://doi.org/10.1016/j.jseaes.2010.04.010 |
Deng, Y. H., Cheng, H. H., Zhang, B., Zhang, H., and Shi, Y. L. (2018). Establishment of the fault slip model for large historical earthquakes and its influence on co-seismic calculations: an example of the MS8.5 Haiyuan earthquake in 1920. Chinese J. Geophys. (in Chinese) |
Dewey, J. F., and Burke, K. C. A. (1973). Tibetan, variscan, and precambrian basement reactivation: products of continental collision. J. Geol., 81(6), 683–692. https://doi.org/10.1086/627920 |
Duan, H. R., Zhang, Y. Z., Xu, H. J., and Yao, W. Q. (2011). Velocity of crustal vertical movement computed by using GRACE data in China's western region. Prog. Geophys. (in Chinese) |
Duan, H. R., Kang, M. Z., Wu, S. Y., Chen, L. K., and Jiao, J. S. (2020). Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field. Chinese J. Geophys. (in Chinese) |
England, P., and Houseman, G. (1989). Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res.:Solid Earth, 94(B12), 17561–17579. https://doi.org/10.1029/JB094iB12p17561 |
England, P., and Molnar, P. (1990). Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344(6262), 140–142. https://doi.org/10.1038/344140a0 |
Erkan, K., Shum, C. K., Wang, L., Guo, J. Y., Jekeli, C., Lee, H., Panero, W. R., Duan, J. B., Huang, Z. W., and Wang, H. S. (2011) Geodetic constraints on the Qinghai-Tibetan Plateau present-day geophysical processes. Terr. Atmos. Ocean. Sci., 22, 241–253.222 |
Feng, Z. M., Li, W. J., Li, P., and Xiao, C. W. (2020). Relief degree of land surface and its geographical meanings in the Qinghai-Tibet Plateau, China. Acta Geogr. Sin. (in Chinese) |
Fu, J. G., Li, G. M., Wang, G. H., Huang, Y., Zhang, L. K., Dong, S. L., and Liang, W. (2017). First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome. Int. J. Earth Sci., 106(5), 1581–1596. https://doi.org/10.1007/s00531-016-1368-2 |
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., … Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.222 |
Geruo, A., Wahr, J., and Zhong, S. J. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int., 192(2), 557–572. https://doi.org/10.1093/gji/ggs030 |
Han, S. C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C. Y. (2006). Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 313(5787), 658–662. https://doi.org/10.1126/science.1128661 |
Hao, M., Wang, Q. L., Shen, Z. K., Cui, D. X., Ji, L. Y., Li, Y. H., and Qin, S. L. (2014). Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632, 281–292. https://doi.org/10.1016/j.tecto.2014.06.016 |
He, C. S. (2019). Uplift mechanism of the world’s largest continental plateau in Tibet. Acta Geol. Sin. - Engl. Ed., 93(S1), 110. https://doi.org/10.1111/1755-6724.13971 |
Huang, F., Bai, R. X., Deng, G. X., Liu, X. C., and Li, X. H. (2021). Barium isotope evidence for the role of magmatic fluids in the origin of Himalayan leucogranites. Sci. Bull., 66(22), 2329–2336. https://doi.org/10.1016/j.scib.2021.07.020 |
Jiao, J. S., Zhang, Y. Z., Yin, P., Zhang, K. N., Wang, Y. P., and Bilker-Koivula, M. (2019). Changing Moho beneath the Tibetan Plateau revealed by GRACE observations. J. Geophys. Res.:Solid Earth, 124(6), 5907–5923. https://doi.org/10.1029/2018JB016334 |
Li, H. O., Xu, X. W., and Jiang, M. (2008). Deep dynamical processes in the central-southern Qinghai-Tibet Plateau—receiver functions and travel-time residuals analysis of north Hi-Climb. Sci. China Ser. D:Earth Sci., 51(9), 1297–1305. https://doi.org/10.1007/s11430-008-0096-2 |
Li, P., Zhu, A. Y., Han, W., and Li, M. (2012). Numerical simulation of geodynamic problems—take present uplift of Qinghai-Tibet Plateau as example. Seismol. Geomag. Obser. Res. (in Chinese) |
Liang, S. M., Gan, W. J., Shen, C. Z., Xiao, G. R., Liu, J., Chen, W. T., Ding, X. G., and Zhou, D. M. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res.:Solid Earth, 118(10), 5722–5732. https://doi.org/10.1002/2013JB010503 |
Liu, J., Fang, J., Li, H. L., Cui, R. H., and Chen, M. (2015). Secular variation of gravity anomalies within the Tibetan Plateau derived from GRACE data. Chinese J. Geophys. (in Chinese) |
Loomis, B. D., Rachlin, K. E., Wiese, D. N., Landerer, F. W., and Luthcke, S. B. (2020). Replacing GRACE/GRACE-FO C30 with satellite laser ranging: impacts on Antarctic Ice Sheet mass change. Geophys. Res. Lett., 47(3), e2019GL085488. https://doi.org/10.1029/2019GL085488 |
Mohamed, A., Sultan, M., Ahmed, M., Yan, E., and Ahmed, E. (2017). Aquifer recharge, depletion, and connectivity: inferences from GRACE, land surface models, and geochemical and geophysical data. Geol. Soc. Am. Bull., 129(5-6), 534–546. https://doi.org/10.1130/B31460.1 |
Molnar, P., and Tapponnier, P. (1975). Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189(4201), 419–426. https://doi.org/10.1126/science.189.4201.419 |
Moritz, H. (1990). The inverse Vening Meinesz problem in isostasy. Geophys. J. Int., 102(3), 733–738. https://doi.org/10.1111/j.1365-246X.1990.tb04591.x |
Oelke, C., and Zhang, T. J. (2007). Modeling the active-layer depth over the Tibetan Plateau. Arct. Antarct. Alp. Res., 39(4), 714–722. https://doi.org/10.1657/1523-0430(06-200)[OELKE]2.0.CO;2 |
Pan, Y. J., Shen, W. B., Shum, C. K., and Chen, R. Z. (2018). Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth Planet. Sci. Lett., 502, 12–22. https://doi.org/10.1016/j.jpgl.2018.08.037 |
Qiao, B. J., Zhu, L. P., and Yang, R. M. (2019). Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ., 222, 232–243. https://doi.org/10.1016/j.rse.2018.12.037 |
Qiu, J. (2010). Measuring the meltdown. Nature, 468(7321), 141–142. https://doi.org/10.1038/468141a |
Qiu, J. (2012). Tibetan glaciers shrinking rapidly. Nature News., 15 July 2012.222 |
Rao, W. L., and Sun, W. K. (2021). Moho interface changes beneath the Tibetan Plateau based on GRACE data. J. Geophys. Res.:Solid Earth, 126(2), e2020JB020605. https://doi.org/10.1029/2020JB020605 |
Rao, W. L., and Sun, W. K. (2022). Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data. Earth Planet. Phys., 6(3), 228–240. https://doi.org/10.26464/epp2022021 |
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., … Toll, D. (2004). The global land data assimilation system. Bull. Amer. Meteor. Soc., 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 |
Rodell, M., Velicogna, I., and Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–1002. https://doi.org/10.1038/nature08238 |
Shen, Y., Wang, Q. Y., Rao, W. L., and Sun, W. K. (2022). Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China contient. Earth Planet. Phys., 6(1), 96–107. https://doi.org/10.26464/epp2022009 |
Shin, Y. H., Shum, C. K., Braitenberg, C., Lee, S. M., Na, S. H., Choi, K. S., Hsu, H., Park, Y. S., and Lim, M. (2015). Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data. Sci. Rep., 5, 11681. https://doi.org/10.1038/srep11681 |
Sjöberg, L. E., and Abrehdary, M. (2021). The uncertainty of CRUST1.0: Moho depth and density contrast models. J. Appl. Geod., 15(2), 143–152. https://doi.org/10.1515/jag-2020-0049 |
Steffen, H., Petrovic, S., Müller, J., Schmidt, R., Wünsch, J., Barthelmes, F., and Kusche, J. (2009). Significance of secular trends of mass variations determined from GRACE solutions. J. Geodyn., 48(3-5), 157–165. https://doi.org/10.1016/j.jog.2009.09.029 |
Stolk, W., Kaban, M., Beekman, F., Tesauro, M., Mooney, W. D., and Cloetingh, S. (2013). High resolution regional crustal models from irregularly distributed data: application to Asia and adjacent areas. Tectonophysics, 602, 55–68. https://doi.org/10.1016/j.tecto.2013.01.022 |
Sun, W. K., Wang, Q., Li, H., Wang, Y., Okubo, S., Shao, D. S., Liu, D. Z., and Fu, G. Y. (2009). Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: geodetic evidence of increasing crustal thickness. Geophys. Res. Lett., 36(2), L02303. https://doi.org/10.1029/2008GL036512 |
Sun, Y., Riva, R., and Ditmar, P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res.:Solid Earth, 121(11), 8352–8370. https://doi.org/10.1002/2016JB013073 |
Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36(19), L19503. https://doi.org/10.1029/2009GL040222 |
Wang, H. S., Wu, P., and Wang, Z. Y. (2006). An approach for spherical harmonic analysis of non-smooth data. Comput. Geosci., 32(10), 1654–1668. https://doi.org/10.1016/j.cageo.2006.03.004 |
Wang, M., and Shen, Z. K. (2020). Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res.:Solid Earth, 125(2), e2019JB018774. https://doi.org/10.1029/2019JB018774 |
Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A., You, X. Z., Niu, Z. J., Wu, J. C., … Chen, Q. Z. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542), 574–577. https://doi.org/10.1126/science.1063647 |
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F. (2013). Generic mapping tools: improved version released. Eos Trans. AGU, 94(45), 409–410. https://doi.org/10.1002/2013EO450001 |
Westaway, R. (1995). Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan Plateau: a working hypothesis. J. Geophys. Res.:Solid Earth, 100(B8), 15173–15192. https://doi.org/10.1029/95JB01310 |
Wu, F. Y., Liu, X. C., Liu, Z. C., Wang, R. C., Xie, L., Wang, J. M., Ji, W. Q., Yang, L., Liu, C., … He, S. X. (2020). Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352–353, 105319.222 |
Xiang, L. W., Wang, H. S., Steffen, H., Wu, P., Jia, L. L., Jiang, L. M., and Shen, Q. (2016). Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett., 449, 228–239. https://doi.org/10.1016/j.jpgl.2016.06.002 |
Xing, L. L., Sun, W. K., Li, H., and Yang, G. L. (2011). Present-day crust thickness increasing beneath the Qinghai-Tibetan Plateau by using geodetic data at Lhasa station. Acta Geodaet. Cartogr. Sin. (in Chinese), 40(1), 41–44, 58.222 |
Xu, C., Liu, Z. W., Luo, Z. C., Wu, Y. H., and Wang, H. H. (2017). Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications. J. Asian Earth Sci., 138, 378–386. https://doi.org/10.1016/j.jseaes.2017.02.028 |
Xu, W. C., Zhang, H. F., Luo, B. J., Guo, L., and Yang, H. (2015). Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: an example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos, 232, 197–210. https://doi.org/10.1016/j.lithos.2015.07.001 |
Yao, T. D., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X. X., Duan, K. Q., Zhao, H. B., … Joswiak, D. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2(9), 663–667. https://doi.org/10.1038/nclimate1580 |
Ye, H., Yi, G. H., Zhang, T. B., Zhou, X. B., Li, J. J., Bie, X. J., Shen, Y. L., and Yang, Z. L. (2020). Spatiotemporal variations of snow cover in the Qinghai-Tibetan Plateau from 2000 to 2019. Resour Sci. (in Chinese) |
Yi, S., and Sun, W. K. (2014). Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res.:Solid Earth, 119(3), 2504–2517. https://doi.org/10.1002/2013JB010860 |
Yi, S., Freymueller, J. T., and Sun, W. K. (2016). How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations. J. Geophys. Res.:Solid Earth, 121(9), 6903–6915. https://doi.org/10.1002/2016JB013151 |
Zhang, G. Q., Xie, H. J., Kang, S. C., Yi, D. H., and Ackley, S. F. (2011). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ., 115(7), 1733–1742. https://doi.org/10.1016/j.rse.2011.03.005 |
Zhang, P. Z., Deng, Q. D., Zhang, Z. Q., and Li, H. B. (2013). Active faults, earthquake hazards and associated geodynamic processes in continental China. Sci. Sin. Terr. (in Chinese) |
Zhao, G. D., Liu, J. X., Chen, B., Kaban, M. K., and Zheng, X. Y. (2020). Moho beneath Tibet based on a joint analysis of gravity and seismic data. Geochem. Geophys. Geosyst., 21(2), e2019GC008849. https://doi.org/10.1029/2019GC008849 |
[1] |
ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008 |
[2] |
KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005 |
[3] |
Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029 |
[4] |
WeiLong Rao, WenKe Sun, 2022: Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data, Earth and Planetary Physics, 6, 228-240. doi: 10.26464/epp2022021 |
[5] |
TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004 |
[6] |
Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025 |
[7] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[8] |
TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008 |
[9] |
HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006 |
[10] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[11] |
Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030 |
[12] |
DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038 |
[13] |
WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033 |
[14] |
XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010 |
[15] |
Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029 |
[16] |
Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015 |
[17] |
Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044 |
[18] |
XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009 |
[19] |
Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011 |
[20] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)