Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Barbour, A. J. and Beeler, N. M. (2021). Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir. Earth Planet. Phys., 5(4), 1–12. http://doi.org/10.26464/epp2021034

doi: 10.26464/epp2021034

SOLID EARTH: SEISMOLOGY

Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir

U. S. Geological Survey, Earthquake Science Center, USA

Corresponding author: Andrew J Barbour, abarbour@usgs.gov

Received Date: 2021-03-14
Web Publishing Date: 2021-05-31

Connecting earthquake nucleation in basement rock to fluid injection in basal, sedimentary reservoirs, depends heavily on choices related to the poroelastic properties of the fluid-rock system, thermo-chemical effects notwithstanding. Direct constraints on these parameters outside of laboratory settings are rare, and it is commonly assumed that the rock layers are isotropic. With the Arbuckle wastewater disposal reservoir in Osage County, Oklahoma, high-frequency formation pressure changes and collocated broadband ground velocities measured during the passing of large teleseismic waves show a poroelastic response of the reservoir that is both azimuthally variable and anisotropic; this includes evidence of static shifts in pressure that presumably relate to changes in local permeability. The azimuthal dependence in both the static response and shear coupling appears related to tectonic stress and strain indicators such as the orientations of the maximum horizontal stress and faults and fractures. Using dynamic strains from a nearby borehole strainmeter, we show that the ratio of shear to volumetric strain coupling is $ \sim 0.41 $ which implies a mean Skempton's coefficient of $ A = 0.24 $ over the plausible range of the undrained Poisson's ratio. Since these observations are made at relatively low confining pressure and differential stress, we suggest that the hydraulically conductive fracture network is a primary control on the coupling between pore pressure diffusion and elastic stresses in response to natural or anthropogenic sources.

Key words: poroelasticity; dynamic strain; anisotropy; wastewater disposal; Oklahoma; induced seismicity

Abramowitz, M., and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington, USA: U.S. Government Printing Office.222

Agnew, D. C., and Wyatt, F. K. (2014). Dynamic strains at regional and Teleseismic distances. Bull. Seismol. Soc. Amer., 104(4), 1846–1859. https://doi.org/10.1785/0120140007

Alt II, R. C., and Zoback, M. D. (2017). In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Amer., 107(1), 216–228. https://doi.org/10.1785/0120160156

Ansari, E., Bidgoli, T. S., and Hollenbach, A. (2019). Accelerated fill-up of the Arbuckle group aquifer and links to U.S. midcontinent seismicity. J. Geophys. Res.: Solid Earth, 124(3), 2670–2683. https://doi.org/10.1029/2018jb016926

Barbour, A. J. (2015). Pore pressure sensitivities to dynamic strains: observations in active tectonic regions. J. Geophys. Res.: Solid Earth, 120(8), 5863–5883. https://doi.org/10.1002/2015jb012201

Barbour, A. J., Xue, L., Roeloffs, E., and Rubinstein, J. L. (2019). Leakage and increasing fluid pressure detected in Oklahoma’s wastewater disposal reservoir. J. Geophys. Res.: Solid Earth, 124(3), 2896–2919. https://doi.org/10.1029/2019jb017327

Ben-Menahem, A., and Singh, S. J. (1981).Seismic Waves and Sources. New York: Springer.222

Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. J. Geophys. Res., 65(4), 1083–1102. https://doi.org/10.1029/jz065i004p01083

Birch, F. (1961). The velocity of compressional waves in rocks to 10 kilobars: 2. J. Geophys. Res., 66(7), 2199–2224. https://doi.org/10.1029/jz066i007p02199

Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M. (2003). A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res.: Solid Earth, 108(B8), 2390. https://doi.org/10.1029/2002jb002321

Cheng, C. H. (1993). Crack models for a transversely isotropic medium. J. Geophys. Res.: Solid Earth, 98(B1), 675–684. https://doi.org/10.1029/92jb02118

Cochran, E. S., Skoumal, R. J., McPhillips, D., Ross, Z. E., and Keranen, K. M. (2020). Activation of optimally and unfavourably oriented faults in a uniform local stress field during the 2011 Prague, Oklahoma, sequence. Geophys. J. Int., 222(1), 153–168. https://doi.org/10.1093/gji/ggaa153

Davis III, H. G. (1985). Wrenching and oil Migration, Mervine field area, kay county, oklahoma. Shale Shaker Digest XI, XXXIII-XXXV, 145–158. https://doi.org/10.1306/ad462bf5-16f7-11d7-8645000102c1865d

Detournay, E., and Cheng, A. H. D. (1993). Fundamentals of Poroelasticity. In C. Fairhurst (Ed)., Analysis and Design Methods, (pp. 113-171). Amsterdam: Elsevier. https: //doi.org/10.1016/b978-0-08-040615-2.50011-3222

Doan, M. L., and Cornet, F. H. (2007). Small pressure drop triggered near a fault by small teleseismic waves. Earth Planet. Sci. Lett., 258(1-2), 207–218. https://doi.org/10.1016/j.jpgl.2007.03.036

Elkhoury, J. E., Brodsky, E. E., and Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441(7097), 1135–1138. https://doi.org/10.1038/nature04798

Elkhoury, J. E., Niemeijer, A., Brodsky, E. E., and Marone, C. (2011). Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock. J. Geophys. Res.: Solid Earth, 116(B2), B02311. https://doi.org/10.1029/2010JB007759

Fan, W. Y., Barbour, A. J., Cochran, E. S., and Lin, G. Q. (2021). Characteristics of frequent dynamic triggering of microearthquakes in Southern California. J. Geophys. Res.: Solid Earth. https://doi.org/10.1029/2020jb020820

Firkins, M., Kolawole, F., Marfurt, K. J., and Carpenter, B. M. (2020). Attribute-assisted characterization of basement faulting and the associated sedimentary sequence deformation in north-central Oklahoma. Interpretation, 8(4), SP175–SP189. https://doi.org/10.1190/INT-2020-0053.1

Hodgkinson, K., Langbein, J., Henderson, B., Mencin, D., and Borsa, A. (2013). Tidal calibration of plate boundary observatory borehole strainmeters. J. Geophys. Res.: Solid Earth, 118(1), 447–458. https://doi.org/10.1029/2012jb009651

Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. Int., 64(1), 133–150. https://doi.org/10.1111/j.1365-246x.1981.tb02662.x

Hussey, S. P., and Halihan, T. (2018). Initial Piezometric conditions of the Arbuckle Group. In Proceedings of GSA Annual Meeting in Indianapolis. Indiana: GSA.222

Kolawole, F., Johnston, C. S., Morgan, C. B., Chang, J. C., Marfurt, K. J., Lockner, D. A., Reches, Z., and Carpenter, B. M. (2019). The susceptibility of Oklahoma’s basement to seismic reactivation. Nat. Geosci., 12(10), 839–844. https://doi.org/10.1038/s41561-019-0440-5

Kroll, K. A., Cochran, E. S., and Murray, K. E. (2017). Poroelastic properties of the arbuckle group in Oklahoma derived from well fluid level response to the 3 September 2016 Mw5.8 Pawnee and 7 November 2016 Mw5.0 Cushing Earthquakes. Seismol. Res. Lett., 88(4), 963–970. https://doi.org/10.1785/0220160228

Lockner, D. A., and Stanchits, S. A. (2002). Undrained poroelastic response of sandstones to deviatoric stress change. J. Geophys. Res.: Solid Earth, 107(B12), ETG 13-1–ETG 13-14. https://doi.org/10.1029/2001jb001460

Lockner, D. A., and Beeler, N. M. (2003). Stress-induced anisotropic poroelasticity response in sandstone. In Proceedings of the 16th ASCE Engineering Mechanics Conference (pp. 1-13). U Washington, Seattle, WA: ASCE.222

Manga, M., Beresnev, I., Brodsky, E. E., Elkhoury, J. E., Elsworth, D., Ingebritsen, S. E., Mays, D. C., and Wang, C. Y. (2012). Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys., 50(2). https://doi.org/10.1029/2011rg000382

Manning, C. E., and Ingebritsen, S. E. (1999). Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys., 37(1), 127–150. https://doi.org/10.1029/1998rg900002

Nolte, K. A. (2017). Monitoring induced seismicity near the Wellington oil field, South-Central Kansas. Kansas: University of Kansas.222

Ohno, M., Wakita, H., and Kanjo, K. (1997). A water well sensitive to seismic waves. Geophys. Res. Lett., 24(6), 691–694. https://doi.org/10.1029/97gl00471

Peterie, S. L., Miller, R. D., Intfen, J. W., and Gonzales, J. B. (2018). Earthquakes in Kansas induced by extremely far-field pressure diffusion. Geophys. Res. Lett., 45(3), 1395–1401. https://doi.org/10.1002/2017gl076334

Rice, J. R., and Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys., 14(2), 227–241. https://doi.org/10.1029/rg014i002p00227

Roeloffs, E. A. (1998). Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res.: Solid Earth, 103(B1), 869–889. https://doi.org/10.1029/97jb02335

Shalev, E., Kurzon, I., Doan, M. L., and Lyakhovsky, V. (2016a). Water-level oscillations caused by volumetric and deviatoric dynamic strains. Geophys. J. Int., 204(2), 841–851. https://doi.org/10.1093/gji/ggv483

Shalev, E., Kurzon, I., Doan, M. L., and Lyakhovsky, V. (2016b). Sustained water-level changes caused by damage and compaction induced by teleseismic earthquakes. J. Geophys. Res.: Solid Earth, 121(7), 4943–4954. https://doi.org/10.1002/2016jb013068

Skempton, A. W. (1954). The pore-pressure coefficients A and B. Géotechnique, 4(4), 143–147. https://doi.org/10.1680/geot.1954.4.4.143

Townend, J., and Zoback, M. D. (2000). How faulting keeps the crust strong. Geology, 28(5), 399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2

van der Elst, N. J., Savage, H. M., Keranen, K. M., and Abers, G. A. (2013). Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern united states. Science, 341(6142), 164–167. https://doi.org/10.1126/science.1238948

Walsh, J. B. (1965a). The effect of cracks on the compressibility of rock. J. Geophys. Res., 70(2), 381–389. https://doi.org/10.1029/jz070i002p00381

Walsh, J. B. (1965b). The effect of cracks on the uniaxial elastic compression of rocks. J. Geophys. Res., 70(2), 399–411. https://doi.org/10.1029/jz070i002p00399

Wang, C. Y., Chia, Y., Wang, P. L., and Dreger, D. (2009). Role of S waves and Love waves in coseismic permeability enhancement. Geophys. Res. Lett., 36(9), L09404. https://doi.org/10.1029/2009gl037330

Wang, C. Y., and Manga, M. (2010). Hydrologic responses to earthquakes and a general metric. Geofluids, 10(1-2), 206–216. https://doi.org/10.1111/j.1468-8123.2009.00270.x

Wang, C. Y., Doan, M. L., Xue, L., and Barbour, A. J. (2018). Tidal response of groundwater in a leaky aquifer—application to Oklahoma. Water Res. Res., 54(10), 8019–8033. https://doi.org/10.1029/2018wr022793

Wang, H. F. (1997). Effects of deviatoric stress on undrained pore pressure response to fault slip. J. Geophys. Res.: Solid Earth, 102(B8), 17943–17950. https://doi.org/10.1029/97jb01358

Wang, H. F. (2000). Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton: Princeton University Press.222

Wong, T. F. (2017). Anisotropic Poroelasticity in a rock with cracks. J. Geophys. Res.: Solid Earth, 122(10), 7739–7753. https://doi.org/10.1002/2017jb014315

[1]

SiYu Miao, HaiJiang Zhang,YuYang Tan,Ye Lin, 2021: High resolution seismic waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics. doi: 10.26464/epp2021056

[2]

Hemami, B., Feizi Masouleh, S., Ghassemi, A., 2021: 3D Geomechanical Modeling of the Response of the Wilzetta Fault to Saltwater Disposal, Earth and Planetary Physics. doi: 10.26464/epp2021054

[3]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005

[4]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[5]

Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030

[6]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, and JinRong Su, 2021: Spatial-temporal Evolution of Injection Induced Earthquakes in Weiyuan Area by Machine-Learning Phase Picker and Waveform Cross-correlation, Earth and Planetary Physics. doi: 10.26464/epp2021055

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir

Andrew J Barbour, Nicholas M Beeler