Citation:
He, X. B., Tao, J. T., Cao, Y., Pan, F. B., He, E. Y., Cao, L. M., and Zheng, Y. X. (2022). No seamount subduction, no magmatic arc?. Earth Planet. Phys., 6(4), 1–6. http://doi.org/10.26464/epp2022031
doi: 10.26464/epp2022031
No seamount subduction, no magmatic arc?
1. | Department of Ocean Exploration & Technology, Zhejiang Ocean University, Zhoushan Zhejiang 316022, China |
2. | School of Earth Sciences, China University of Geosciences, Wuhan 430074, China |
3. | Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China |
4. | Department of Marine Sciences, Zhejiang University, Zhoushan Zhejiang 316021, China |
Water is essential for the formation of a magmatic arc by lowering the melting temperature of materials in the mantle wedge. As such, it is logical to attribute the absence of a magmatic arc to insufficient water released from the subducting plate, although a number of other factors may cause volcanic arc quiescence as well, such as a slab window or flat slab subduction. In this contribution, we present a possible but testable correlation between the occurrence of a magmatic arc and seamount subduction in light of bathymetric data obtained near trenches. This correlation, if it holds true, in turn means that a magmatic arc is unlikely to occur when the subducting slabs have not been severely fractured and that one of the main reasons for excluding effects such as the slab window or flat slab subduction may be that the plate is not accompanied by seamounts. Therefore, the role that seamount subduction plays in recycling water back into the mantle deserves more attention from the earth sciences community.
Arai, R., Kodaira, S., Yamada, T., Takahashi, T., Miura, S., Kaneda, Y., Nishizawa, A., and Oikawa, M. (2017). Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab. Geophys. Res. Lett., 44(12), 6109–6115. https://doi.org/10.1002/2017GL073789 |
Attia, S., Cottle, J. M., and Paterson, S. R. (2020). Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology, 48(5), 446–451. https://doi.org/10.1130/G46991.1 |
Baba, T., Hori, T., Hirano, S., Cummins, P. R., Park, J. O., Kameyama, M., and Kaneda, Y. (2001). Deformation of a seamount subducting beneath an accretionary prism: Constraints from numerical simulation. Geophys. Res. Lett., 28(9), 1827–1830. https://doi.org/10.1029/2000GL012266 |
Bassett, D., and Watts, A. B. (2015). Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior. Geochem. Geophys. Geosyst., 16(5), 1541–1576. https://doi.org/10.1002/2014gc005685 |
Cai, C., Wiens, D. A., Shen, W. S., and Eimer, M. (2018). Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563(7731), 389–392. https://doi.org/10.1038/s41586-018-0655-4 |
Castellanos, J. C., Clayton, R. W., and Pérez-Campos, X. (2018). Imaging the eastern Trans-Mexican Volcanic Belt with ambient seismic noise: Evidence for a slab tear. J. Geophys. Res.:Solid Earth, 123(9), 7741–7759. https://doi.org/10.1029/2018JB015783 |
Chesley, C., Naif, S., Key, K., and Bassett, D. (2021). Fluid-rich subducting topography generates anomalous forearc porosity. Nature, 595(7866), 255–260. https://doi.org/10.1038/s41586-021-03619-8 |
Chuang, L., Bostock, M., Wech, A., and Plourde, A. (2017). Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap. Geology, 45(7), 647–650. https://doi.org/10.1130/G38867.1 |
Geersen, J., Sippl, C., and Harmon, N. (2022). Impact of bending-related faulting and oceanic-plate topography on slab hydration and intermediate-depth seismicity. Geosphere, 18(2), 562–584. https://doi.org/10.1130/ges02367.1 |
Gutscher, M. A., Maury, R., Eissen, J. P., and Bourdon, E. (2000). Can slab melting be caused by flat subduction?. Geology, 28(6), 535–538. https://doi.org/10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2 |
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 |
Ivandic, M., Grevemeyer, I., Bialas, J., and Petersen, C. J. (2010). Serpentinization in the trench-outer rise region offshore of Nicaragua: Constraints from seismic refraction and wide-angle data. Geophys. J. Int., 180(3), 1253–1264. https://doi.org/10.1111/j.1365-246X.2009.04474.x |
Katz, R. F., Spiegelman, M., and Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst., 4(9), 1073. https://doi.org/10.1029/2002GC000433 |
Kerr, A. C. (2014). Oceanic plateaus. In H. D. Holland, et al. (Eds.), Treatise on Geochemistry (2nd ed., Vol. 4, pp. 631–667). Oxford: Elsevier.222 |
Kopp, H., Flueh, E. R., Papenberg, C., and Klaeschen, D. (2004). Seismic investigations of the O’Higgins Seamount Group and Juan Fernández Ridge: Aseismic ridge emplacement and lithosphere hydration. Tectonics, 23(2), TC2009. https://doi.org/10.1029/2003TC001590 |
Ku, Y. P., Chen, C. H., Song, S. R., Iizuka, Y., and Shen J. J. S. (2009). A 2 Ma record of explosive volcanism in southwestern Luzon: Implications for the timing of subducted slab steepening. Geochem. Geophys. Geosyst., 10(6), Q06017. https://doi.org/10.1029/2009GC002486 |
Li, S. S., and Freymueller, J. T. (2018). Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska–Aleutian subduction zone. Geophys. Res. Lett., 45(8), 3453–3460. https://doi.org/10.1002/2017GL076761 |
Manea, V. C., Manea, M., Ferrari, L., Orozco-Esquivel, T., Valenzuela, R. W., Husker, A., and Kostoglodov V. (2017). A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics, 695, 27–52. https://doi.org/10.1016/j.tecto.2016.11.037 |
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., … Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018TC005462 |
Oakley, A. J., Taylor, B., and Moore, G. F. (2008). Pacific plate subduction beneath the central Mariana and Izu-Bonin fore arcs: New insights from an old margin. Geochem. Geophys. Geosyst., 9(6), Q06003. https://doi.org/10.1029/2007GC001820 |
Park, J., and Rye, D. M. (2019a). Why is crustal underplating beneath many hot spot islands anisotropic?. Geochem. Geophys. Geosyst., 20(11), 4779–4809. https://doi.org/10.1029/2019GC008492 |
Park, J., and Rye, D. M. (2019b). Broader impacts of the metasomatic underplating hypothesis. Geochem. Geophys. Geosyst., 20(11), 4810–4829. https://doi.org/10.1029/2019GC008493 |
Paterson, S. R., and Ducea, M. N. (2015). Arc magmatic tempos: Gathering the evidence. Elements, 11(2), 91–98. https://doi.org/10.2113/gselements.11.2.91 |
Petersen, S. E., Hoisch, T. D., and Porter, R. C. (2021). Assessing the role of water in Alaskan flat-slab subduction. Geochem. Geophys. Geosyst., 22(5), e2021GC009734. https://doi.org/10.1029/2021GC009734 |
Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H., and Wallance, P. J. (2013). Why do mafic arc magmas contain ~4 wt% water on average?. Earth Planet. Sci. Lett., 364, 168–179. https://doi.org/10.1016/j.jpgl.2012.11.044 |
Qian, S. P., Gazel, E., Nichols, A. R. L., Cheng, H., Zhang, L., Salters, V. J., Li, J., Xia, X. P., and Zhou, H. Y. (2021). The origin of Late Cenozoic magmatism in the South China Sea and southeast Asia. Geochem. Geophys. Geosyst., 22(8), e2021GC009686. https://doi.org/10.1029/2021GC009686 |
Rondenay, S., Montési, L. G. J., and Abers, G. A. (2010). New geophysical insight into the origin of the Denali volcanic gap. Geophys. J. Int., 182(2), 613–630. https://doi.org/10.1111/j.1365-246X.2010.04659.x |
Rosenbaum, G., and Mo, W. (2011). Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Res., 19(3), 571–582. https://doi.org/10.1016/j.gr.2010.10.007 |
Stern, R. J. (2002). Subduction zones. Rev. Geophys., 40(4), 1012. https://doi.org/10.1029/2001RG000108 |
Syracuse, E. M., and Abers, G. A. (2006). Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst., 7(5), Q05017,222 |
Tang, G. J., Cawood, P. A., Wyman, D. A., Dan, W., Wang, Q., and Yang, Y. N. (2021). The missing magmatic arc in a long-lived ocean from the western Kunlun-Pamir Paleo-Tethys realm. Geophys. Res. Lett., 48(22), e2021GL095192. https://doi.org/10.1029/2021GL095192 |
Wan, K. Y., Lin, J., Xia, S. H., Sun, J. L., Xu, M., Yang, H. F., Zhou, Z. Y., Zeng, X., Cao, J. H., and Xu, H. L. (2019). Deep seismic structure across the southernmost Mariana trench: Implications for arc rifting and plate hydration. J. Geophys. Res.:Solid Earth, 124(5), 4710–4727. https://doi.org/10.1029/2018jb017080 |
Wang, K. L., and Bilek, S. L. (2011). Do subducting seamounts generate or stop large earthquakes?. Geology, 39(9), 819–822. https://doi.org/10.1130/G31856.1 |
Wang, K. L., and Bilek, S. L. (2014). Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics, 610, 1–24. https://doi.org/10.1016/j.tecto.2013.11.024 |
Wessel, P., and Smith, W. H. F. (1991). Free software helps map and display data. Eos, 72(41), 441–446. https://doi.org/10.1029/90EO00319 |
Yang J. F., Lu, G., Liu, T., Li, Y., Wang, K., Wang X. X., Sun, B. L., Faccenda, M., and Zhao, L. (2020). Amagmatic subduction produced by mantle serpentinization and oceanic crust delamination. Geophys. Res. Lett., 47(9), e2019GL086257. https://doi.org/10.1029/2019GL086257 |
Yumul, G. P. Jr., Armada, L. T., Gabo-Ratio, J. A. S., Dimalanta, C. B., and Austria, R. S. P. (2020). Subduction with arrested volcanism: Compressional regime in volcanic arc gap formation along east Mindanao, Philippines. J. Asian Earth Sci.:X, 4, 100030. https://doi.org/10.1016/j.jaesx.2020.100030 |
Zhang, J. Y., Zhang, F., Yang, H. F., Lin, J., and Sun, Z. (2022). The effects of plateau subduction on plate bending, stress and intraplate seismicity. Terra Nova, 34(2), 113–122. https://doi.org/10.1111/ter.12570 |
Zhao, M. H., He, E. Y., Sibuet, J. C., Sun, L. T., Qiu, X. L., Tan, P. C., and Wang, J. (2018). Postseafloor spreading volcanism in the central East South China Sea and its formation through an extremely thin oceanic crust. Geochem. Geophys. Geosyst., 19(3), 621–641. https://doi.org/10.1002/2017gc007034 |
Zhao, Y. H., Ding, W. W., Yin, S. R., Li., J. B., Zhang, J., and Ding, H. H. (2020). Asymmetric post-spreading magmatism in the South China Sea: Based on the quantification of the volume and its spatiotemporal distribution of the seamounts. Int. Geol. Rev., 62(7-8), 955–969. https://doi.org/10.1080/00206814.2019.1577189 |
Zhu, G. H., Wiens, D. A., Yang, H. F., Lin, J., Xu, M., and You, Q. Y. (2021). Upper mantle hydration indicated by decreased shear velocity near the southern Mariana Trench from Rayleigh wave tomography. Geophys. Res. Lett., 48(15), e2021GL093309. https://doi.org/10.1029/2021GL093309 |
[1] |
Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027 |
[2] |
Mei Yue, JinYao Gao, ChunFeng Li, Chao Zhu, XinZhi Fan, Guochao Wu, ZhongYan Shen, Han Shi, XiaoXian Cai, YiDong Guo, 2022: Neogene faulting and volcanism in the Victoria Land Basin of the Ross Sea, Antarctica, Earth and Planetary Physics, 6, 248-258. doi: 10.26464/epp2022023 |
[3] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[4] |
Tao Tang, Jun Yang, QuanQi Shi, AnMin Tian, Shi-Chen Bai, Alexander William Degeling, SuiYan Fu, JingXian Liu, Tong Shao, ZeYuan Sun, 2020: The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect, Earth and Planetary Physics, 4, 619-626. doi: 10.26464/epp2020066 |
[5] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[6] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[7] |
YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009 |
[8] |
QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020 |
[9] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[10] |
Gang Lu, Liang Zhao, Ling Chen, Bo Wan, FuYuan Wu, 2021: Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?, Earth and Planetary Physics, 5, 123-140. doi: 10.26464/epp2021014 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)