Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ge, S. C., Li, H. L., Meng, L., Wang, M. Y., Xu, T., Ullah, S., Rauf, A. and Abdel, H. (2020). On the radar frequency dependence of polar mesosphere summer echoes. Earth Planet. Phys., 4(6), 1–8doi: 10.26464/epp2020061

doi: 10.26464/epp2020061

SPACE PHYSICS: IONOSPHERIC PHYSICS

On the radar frequency dependence of polar mesosphere summer echoes

1. 

School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

2. 

School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China

3. 

National Key Laboratory of Electromagnetic Environment, China Research Institute of Radio Wave Propagation, Qingdao 266107, China

4. 

Department of Meteorology, Stockholm University, SE-106-91, Stockholm, Sweden

Corresponding author: HaiLong Li, hailong703@163.com

Received Date: 2020-05-22
Web Publishing Date: 2020-08-01

Polar mesosphere summer echoes (PMSEs) are very strong radar echoes in the polar mesopause in local summer. Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipitation on modulated PMSEs by using PMSEs observations carried out by European Incoherent SCATter (EISCAT) heating equipment simultaneously with very high frequency (VHF) radar and ultra high frequency (UHF) radar on 12 July 2007. According to the experimental observations, the PMSEs occurrence rate at VHF was much higher than that at UHF, and the altitude of the PMSEs maximum observed at VHF was higher than that at UHF. Overlapping regions were observed by VHF radar between high energetic particle precipitation and the PMSEs. In addition, high-frequency heating had a very limited impact on PMSEs when the UHF electron density was enhanced because of energetic particle precipitation. In addition, an updated qualitative method was used to study the relationship between volume reflectivity and frequency. The volume reflectivity was found to be inversely proportional to the fourth power of radar frequency. The theoretical and experimental results provide a definitive data foundation for further analysis and investigation of the physical mechanism of PMSEs.

Key words: Polar mesosphere summer echoes; artificial electron heating; volume reflectivity; energetic particle precipitation

Belova, E., Dalin, P., and Kirkwood, S. (2007). Polar mesosphere summer echoes: a comparison of simultaneous observations at three wavelengths. Ann. Geophys., 25(12), 2487–2496. https://doi.org/10.5194/angeo-25-2487-2007

Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Häggström, I., and Kalishin, A. S. (2015). Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics. J. Atmos. Solar Terr. Phys., 135, 50–63. https://doi.org/10.1016/j.jastp.2015.10.009

Cai, H. T., and Ma, S. Y. (2007). Initial study of inversion method for estimating energy spectra of auroral precipitating particles from ground-based is radar observations. Chin. J. Geophys., 50(1), 12–21. https://doi.org/10.1002/cjg2.1005

Chen, C., and Scales, W. A. (2005). Electron temperature enhancement effects on plasma irregularities associated with charged dust in the Earth's mesosphere. J. Geophys. Res.: Space Phys., 110(A12), A12313. https://doi.org/10.1029/2005JA011341

Chilson, P. B., Belova, E., Rietveld, M. T., Kirkwood, S., and Hoppe, U. P. (2000). First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett., 27(23), 3801–3804. https://doi.org/10.1029/2000GL011897

Cho, J. Y. N., Kelley, M. C., and Heinselman, C. J. (1992). Enhancement of Thomson scatter by charged aerosols in the polar mesosphere: Measurements with a 1.29-GHz radar. Geophys. Res. Lett., 19(11), 1097–1100. https://doi.org/10.1029/92GL01155

Cho, J. Y. N., and Kelley, M. C. (1993). Polar mesosphere summer radar echoes: Observations and current theories. Rev. Geophys., 31(3), 243–265. https://doi.org/10.1029/93RG01535

Collis, P. N., and Röttger, J. (1990). Mesospheric studies using the EISCAT UHF and VHF radars: a review of principles and experimental results. J. Atmos. Terr. Phys., 52(6-8), 569–584. https://doi.org/10.1016/0021-9169(90)90054-Q

Czechowsky, P., Rüster, R., and Schmidt, G. (1979). Variations of mesospheric structures in different seasons. Geophys. Res. Lett., 6(6), 459–462. https://doi.org/10.1029/GL006i006p00459

Czechowsky, P., Reid, I. M., Rüster, R., and Schmidt, G. (1989). VHF radar echoes observed in the summer and winter polar mesosphere over Andøya, Norway. J. Geophysi. Res.: Atmos., 94(D4), 5199–5217. https://doi.org/10.1029/JD094iD04p05199

Ecklund, W. L., and Balsley, B. B. (1981). Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys. Res.: Space Phys., 86(A9), 7775–7780. https://doi.org/10.1029/JA086iA09p07775

Havnes, O., Brattli, A., Aslaksen, T., Singer, W., Latteck, R., Blix, T., Thrane, E., and Trøim, J. (2001). First common volume observations of layered plasma structures and polar mesospheric summer echoes by rocket and radar. Geophys. Res. Lett., 28(8), 1419–1422. https://doi.org/10.1029/2000GL012420

Havnes, O., La Hoz, C., Næsheim, L. I., and Rietveld, M. T. (2003). First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett., 30(23), 2229. https://doi.org/10.1029/2003GL018429

Havnes, O., Kassa, M., and La Hoz, C. (2007). Time evolution of artificial electron heating in polar mesosphere summer echo layers. J. Geophysi. Res.: Atmos., 112(D8), D08202. https://doi.org/10.1029/2006JD007660

Havnes, O., Pinedo, H., La Hoz, C., Senior, A., Hartquist, T. W., Rietveld, M. T., and Kosch, M. J. (2015). A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz. Ann. Geophys., 33(6), 737–747. https://doi.org/10.5194/angeo-33-737-2015

Hocking, W., and Röttger, J. (1997). Studies of polar mesosphere summer echoes over EISCAT using calibrated signal strengths and statistical parameters. Rad. Sci., 32(4), 1425–1444. https://doi.org/10.1029/97RS00716

Hoppe, U. P., Hall, C., and Röttger, J. (1988). First observations of summer polar mesospheric backscatter with a 224 MHz radar. Geophys. Res. Lett., 15(1), 28–31. https://doi.org/10.1029/GL015i001p00028

Kassa, M., Havnes, O., and Belova, E. (2005). The effect of electron bite-outs on artificial electron heating and the PMSE overshoot. Ann. Geophys., 23(12), 3633–3643. https://doi.org/10.5194/angeo-23-3633-2005

Kelley, M. C., and Ulwick, J. C. (1988). Large- and small-scale organization of electrons in the high-latitude mesosphere: Implications of the STATE data. J. Geophysi. Res.: Atmos., 93(D6), 7001–7008. https://doi.org/10.1029/JD093iD06p07001

La Hoz, C., Havnes, O., Næsheim, L. I., and Hysell, D. L. (2006). Observations and theories of Polar Mesospheric Summer Echoes at a Bragg wavelength of 16 cm. J. Geophysi. Res.: Atmos., 111(D4), D04203. https://doi.org/10.1029/2005JD006044

La Hoz, C., and Havnes, O. (2008). Artificial modification of polar mesospheric winter echoes with an RF heater: Do charged dust particles play an active role?. J. Geophys. Res.: Atmos., 113(D19), D19205. https://doi.org/10.1029/2008JD010460

Lehtinen, M. S., and Huuskonen, A. (1996). General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys., 58(1-4), 435–452. https://doi.org/10.1016/0021-9169(95)00047-X

Li, H. L., Wu, J., Huang, J. Y., and Wang, M. Y. (2010). Reflection characteristics of layered media in polar mesopause related to polar mesosphere summer echoes. Plasma Sci. Technol., 12(4), 416–420. https://doi.org/10.1088/1009-0630/12/4/07

Mahmoudian, A., Scales, W. A., Kosch, M. J., Senior, A., and Rietveld, M. (2011). Dusty space plasma diagnosis using temporal behavior of polar mesospheric summer echoes during active modification. Ann. Geophys., 29(11), 2169–2179. https://doi.org/10.5194/angeo-29-2169-2011

Mishin, E., Watkins, B., Lehtinen, N., Eliasson, B., Pedersen, T., and Grach, S. (2016). Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res.: Space Phys., 121(4), 3497–3524. https://doi.org/10.1002/2015JA021823

Morris, R. J., Murphy, D. J., Vincent, R. A., Holdsworth, D. A., Klekociuk, A. R., and Reid, I. M. (2006). Characteristics of the wind, temperature and PMSE field above Davis, Antarctica. J. Atmos. Solar Terr. Phys., 68(3-5), 418–435. https://doi.org/10.1016/j.jastp.2005.04.011

Nicolls, M. J., Heinselman, C. J., Hope, E. A., Ranjan, S., Kelley, M. C., and Kelly, J. D. (2007). Imaging of polar mesosphere summer echoes with the 450 MHz poker flat advanced modular incoherent scatter radar. Geophys. Res. Lett., 34(20), L20102. https://doi.org/10.1029/2007GL031476

Rapp, M., and Lübken, F. J. (2004). Polar mesosphere summer echoes (PMSE): Review of observations and current understanding. Atmos. Chem. Phys., 4(11-12), 2601–2633. https://doi.org/10.5194/acp-4-2601-2004

Rauf, A., Li, H. L., Ullah, S., Meng, L., Wang, B., and Wang, M. Y. (2018). Statistical study about the influence of particle precipitation on mesosphere summer echoes in polar latitudes during July 2013. Earth Planets Space, 70, 108. https://doi.org/10.1186/s40623-018-0885-6

Rauf, A., Li, H. L., Ullah, S., Meng, L., Wang, B., and Wang, M. Y. (2019). Investigation of PMSE dependence on high energy particle precipitation during their simultaneous occurrence. Adv. Space Res., 63(1), 309–316. https://doi.org/10.1016/j.asr.2018.09.007

Reid, I. M., Czechowsky, P., Rüster, R., and Schmidt, G. (1989). First VHF radar measurements of mesopause summer echoes at mid-latitudes. Geophys. Res. Lett., 16(2), 135–138. https://doi.org/10.1029/GL016i002p00135

Reid, I. M., Rüster, R., Czechowsky, P., and Schmidt, G. (1988). VHF radar measurements of momentum flux in the summer polar mesosphere over Andenes (69°N, 16°E): Norway. Geophys. Res. Lett., 15(11), 1263–1266. https://doi.org/10.1029/GL015i011p01263

Röttger, J., Rietveld, M. T., La Hoz, C., Hall, T., Kelley, M. C., and Swartz, W. E. (1990). Polar mesosphere summer echoes observed with the EISCAT 933-MHz radar and the CUPRI 46.9-MHz radar, their similarity to 224-MHz radar echoes, and their relation to turbulence and electron density profiles. Radio Sci., 25(4), 671–687. https://doi.org/10.1029/RS025i004p00671

Röttger, J., and La Hoz, C. (1990). Characteristics of polar mesosphere summer echoes (PMSE) observed with the EISCAT 224 MHz radar and possible explanations of their origin. J. Atmos. Terr. Phys., 52(10-11), 893–906. https://doi.org/10.1016/0021-9169(90)90023-g

Röttger, J. (2001). Observations of the polar D-region and the mesosphere with the EISCAT Svalbard Radar and the SOUSY Svalbard Radar. Mem. Natl. Inst. Polar Res., 54, 9–20.

Scales, W. (2004). Electron temperature effects on small-scale plasma irregularities associated with charged dust in the Earth's mesosphere. IEEE Trans. Plasma Sci., 32(2), 724–730. https://doi.org/10.1109/TPS.2004.826082

Senior, A., Mahmoudian, A., Pinedo, H., La Hoz, C., Rietveld, M. T., Scales, W. A., and Kosch, M. J. (2014). First modulation of high-frequency polar mesospheric summer echoes by radio heating of the ionosphere. Geophys. Res. Lett., 41(15), 5347–5353. https://doi.org/10.1002/2014GL060703

Sinnhuber, M., Nieder, H., and Wieters, N. (2012). Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys., 33(6), 1281–1334. https://doi.org/10.1007/s10712-012-9201-3

Swarnalingam, N., Hocking, W. K., and Drummond, J. R. (2011). Long-term aspect-sensitivity measurements of polar mesosphere summer echoes (PMSE) at Resolute Bay using a 51.5 MHz VHF radar. J. Atmos. Solar Terr. Phys., 73(9), 957–964. https://doi.org/10.1016/j.jastp.2010.09.032

Ullah, S., Li, H. L., Abdur, R., Meng, L., Wang, B., and Wang, M. Y. (2018). PMSE dependence on frequency observed simultaneously with VHF and UHF radars in the presence of precipitation. Plasma Sci. Technol., 20(11), 115302. https://doi.org/10.1088/2058-6272/aac8d4

Varney, R. H., Kelley, M. C., Nicolls, M. J., Heinselman, C. J., and Collins, R. L. (2011). The electron density dependence of polar mesospheric summer echoes. J. Atmos. Solar Terr. Phys., 73(14-15), 2153–2165. https://doi.org/10.1016/j.jastp.2010.07.020

Wang, X., Cannon, P., Zhou, C., Honary, F., Ni, B. B., and Zhao, Z. Y. (2016). A theoretical investigation on the parametric instability excited by X-mode polarized electromagnetic wave at Tromsø. J. Geophys. Res. Space Phys., 121(4), 3578–3591. https://doi.org/10.1002/2016JA022411

Yi, W., Reid, I. M., Xue, X. H., Younger, J. P., Murphy, D. J., Chen, T. D., and Dou, X. K. (2017a). Response of neutral mesospheric density to geomagnetic forcing. Geophys. Res. Lett., 44(16), 8647–8655. https://doi.org/10.1002/2017GL074813

Yi, W., Reid, I. M., Xue, X. H., Younger, J. P., Spargo, A. J., Murphy, D. J., Chen, T. D., and Dou, X. K. (2017b). First observation of mesosphere response to the solar wind high-speed streams. J. Geophys. Res.: Space Phys., 122(8), 9080–9088. https://doi.org/10.1002/2017JA024446

Yi, W., Reid, I. M., Xue, X. H., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B. Q., Li, G. Z., Younger, J. P., … Dou, X. K. (2018). High- and middle-latitude neutral mesospheric density response to geomagnetic storms. Geophys. Res. Lett., 45(1), 436–444. https://doi.org/10.1002/2017GL076282

Zhang, B. C., Liu, R. Y., and Liu, S. L. (2001). Simulation study of the influence of the precipitating electrons on the polar ionosphere. Chin. J. Geophys., 44(3), 302–311. https://doi.org/10.1002/cjg2.145

Zou, Z. C., Xue, X. H., Yi, W., Shen, C. L., Yang, C. Y., Tang, Y. H., Chen, T. D., and Dou, X. K. (2020). Response of the high-latitude upper mesosphere to energetic electron precipitation. Astrophys. J., 893(1), 55. https://doi.org/10.3847/1538-4357/ab7eb0

[1]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[2]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[3]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[4]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[5]

Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics. doi: 10.26464/epp2020068

[6]

FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022

[7]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

[8]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[9]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[10]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[11]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[12]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[13]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[14]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[15]

Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system, Earth and Planetary Physics, 3, 147-156. doi: 10.26464/epp2019018

[16]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[17]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[18]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[19]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[20]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

On the radar frequency dependence of polar mesosphere summer echoes

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid