Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Sauer, K., Baumgärtel, K., and Sydora, R. (2020). Gap formation around Ω e/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory. Earth Planet. Phys., 4(2), 138–150doi: 10.26464/epp2020020

2020, 4(2): 138-150. doi: 10.26464/epp2020020

SPACE PLASMA PHYSICS

Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory

1. 

Max-Planck-Institute for Solar System Research, Göttingen, Germany (up to 2005)

2. 

Leibnitz-Institut für Astrophysik (AIP), Potsdam, Germany (up to 2008)

3. 

Institute for Geophysical Research, University of Alberta, Edmonton, Canada

Corresponding author: Klaus Baumgärtel, sauer.ka@gmail.com

Received Date: 2019-09-30
Web Publishing Date: 2020-03-01

In this paper we show that two significant phenomena of magnetospheric chorus emission can be explained by the participation of beam-like electron structures, created by Landau-resonant interaction with growing oblique whistler waves. The first concerns the widely observed spectral gap near half the electron cyclotron frequency Ωe; the second is related to the observation of very obliquely propagating lower-band waves that cannot be directly generated by temperature anisotropy. Concerning the gap, kinetic dispersion theory reveals that interference of the beam-related cyclotron mode ω~Ωe-kVb with the conventional whistler mode leads to mode splitting and the appearance of a ‘forbidden’ area in the ω-k space. Thereby the beam velocity Vb appears as an essential parameter. It is directly related to the phase velocity of the most unstable whistler wave mode, which is close to VAe/2 for sufficiently hot electrons (VAe is the electron Alfven velocity). To clarify the second point, we show that Landau-resonant beams with Vb < VAe/2, which arise in cold plasmas from unstable upper-band waves, are able to generate lower-band whistler mode waves at very oblique propagation (θ ≥ 60°). Our studies demonstrate the important role of Landau-resonant electrons in nonlinear whistler wave generation in the magnetosphere.

Key words: important role play Landau-resonant electrons; modification of the electron distribution function; gap formation at half the electron cyclotron frequency

Agapitov, O. V., Artemyev, A. V., Mourenas, D., Mozer, F. S., and Krasnoselskikh, V. (2015). Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt. Geophys. Res. Lett., 42(23), 10140–10149. https://doi.org/10.1002/2015GL066887

An, X., Yue, C., Bortnik, J., Decyk, V., Li, W., and Thorne, R. M. (2017). On the parameter dependence of the whistler anisotropy instability. J. Geophys. Res. Space Phys., 122(2), 2001–2009. https://doi.org/10.1002/2017JA023895

An, X., Li, J. X., Bortnik, J., Decyk, V., Kletzing, C., and Hospodarsky, G. (2019). Unified view of nonlinear wave structures associated with whistler-mode chorus. Phys. Rev. Lett., 122(4), 045101. https://doi.org/10.1103/PhysRevLett.122.045101

Artemyev, A., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V., and Mozer, F. (2016). Oblique whistler-mode waves in the Earth's inner magnetosphere: Energy distribution, origins, and role in radiation belt dynamics. Space Sci. Rev., 200(1-4), 261–355. https://doi.org/10.1007/s11214-016-0252-5

Bell, T. F., Inan, U. S., Haque, N., and Pickett, J. S. (2009). Source regions of banded chorus. Geophys. Res. Lett., 36(11), L11101. https://doi.org/10.1029/2009GL037629

Burtis, W. J., and Helliwell, R. A. (1969). Banded chorus—A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3. J. Geophys. Res., 74(11), 3002–3010. https://doi.org/10.1029/JA074i011p03002

Dokgo, K., Min, K. W., Choi, C. R., Woo, M., Yoon, P. H., and Hwang, K. J. (2018). Nonlinear evolutions of large amplitude oblique whistler waves. Phys. Plasmas, 25(6), 062904. https://doi.org/10.1063/1.5011775

Drake, J. F., Agapitov, O. V., and Mozer, F. S. (2015). The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves. Geophys. Res. Lett., 42(8), 2563–2570. https://doi.org/10.1002/2015GL063528

Fan, K., Gao, X. L., Lu, Q. M., Guo, J., and Wang, S. (2019). The effects of thermal electrons on whistler mode waves excited by anisotropic hot electrons: linear theory and 2-D PIC simulations. J. Geophys. Res. Space Phys., 124(7), 5234–5245. https://doi.org/10.1029/2019JA026463

Fu, X. R., Cowee, M. M., Friedel, R. H., Funsten, H. O., Gary, S. P., Hospodarsky, G. B., Kletzing, C., Kurth, W., Larsen, B. A.,.. Winske, D. (2014). Whistler anisotropy instabilities as the source of banded chorus: van Allen Probes observations and particle-in-cell simulations. J. Geophys. Res. Space Phys., 119(10), 8288–8298. https://doi.org/10.1002/2014JA020364

Gao, X. L., Lu, Q. M., Bortnik, J., Li, W., Chen, L. J., and Wang, S. (2016). Generation of multiband chorus by lower band cascade in the Earth’s magnetosphere. Geophys. Res. Lett., 43(6), 2343–2350. https://doi.org/10.1002/2016GL068313

Gao, X. L., Lu, Q. M., and Wang, S. (2018). Statistical results of multiband chorus by using THEMIS waveform data. J. Geophys. Res. Space Phys., 123(7), 5506–5515. https://doi.org/10.1029/2018JA025393

Gao, X. L., Chen, L. J., Li, W., Lu, Q. M., and Wang, S. (2019). Statistical results of the power gap between lower-band and upper-band chorus waves. Geophys. Res. Lett., 46(8), 4098–4105. https://doi.org/10.1029/2019GL082140

Gary, S. P. (1993). Theory of Space Plasma Microinstabilities. New York: Cambridge University Press.222

Gary, S. P., Winske, D., and Hesse, M. (2000). Electron temperature anisotropy instabilities: Computer simulations. J. Geophys. Res. Space Phys., 105(A5), 10751–10759. https://doi.org/10.1029/1999JA000322

Gary, S. P., Liu, K, J., and Winske, D. (2011). Whistler anisotropy instability at low electron β: particle-in-cell simulations. Phys. Plasmas, 18(8), 082902. https://doi.org/10.1063/1.3610378

Hashimoto, K., and Matsumoto, H. (1976). Temperature anisotropy and beam type whistler instabilities. Phys. Fluids, 19(10), 1507–1512. https://doi.org/10.1063/1.861342

Hsieh, Y. K., and Omura, Y. (2018). Nonlinear damping of oblique whistler mode waves via Landau resonance. J. Geophys. Res. Space Phys., 123(9), 7462–7472. https://doi.org/10.1029/2018JA025848

Kennel, C. F., and Engelmann, F. (1996). Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids, 9(12), 2377–2388. https://doi.org/10.1063/1.1761629

Li, J. X., Bortnik, J., An, X., Li, W., Thorne, R. M., Zhou, M., Kurth, W. S., Hospodarsky, G. B., Funsten, H. O., and Spence, H. E. (2017). Chorus wave modulation of Langmuir waves in the radiation belts. Geophys. Res. Lett., 44(23), 11713–11721. https://doi.org/10.1002/2017GL075877

Li, J. X., Bortnik, J., An, X., Li, W., Russell, C. T., Zhou, M., Berchem, J., Zhao, C., Wang, S.,.. Burch, J. L. (2018). Local excitation of whistler mode waves and associated Langmuir waves at dayside reconnection regions. Geophys. Res. Lett., 45(17), 8793–8802. https://doi.org/10.1029/2018GL078287

Li, J. X., Bortnik, J., An, X., Li, W., Angelopoulos, V., Thorne, R. M., Russell, C. T., Ni, B. B., Shen, X. C., … Baker, D. N. (2019). Origin of two-band chorus in the radiation belt of Earth. Nat. Commun., 10(1), 4672. https://doi.org/10.1038/s41467-019-12561-3

Li, W., Bortnik, J., Thorne, R. M., Cully, C. M., Chen, L., Angelopoulos, V., Nishimura, Y., Tao, J. B., Bonnell, J. W., and LeContel, O. (2013). Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS. J. Geophys. Res. Space Phys., 118(4), 1461–1471. https://doi.org/10.1002/jgra.50176

Li, W., Mourenas, D., Artemyev, A. V., Bortnik, J., Thorne, R. M., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., … Spence, H. E. (2016). Unraveling the excitation mechanisms of highly oblique lower band chorus waves. Geophys. Res. Lett., 43(17), 8867–8875. https://doi.org/10.1002/2016GL070386

Liu, K. J., Gary, S. P., and Winske, D. (2011). Excitation of banded whistler waves in the magnetosphere. Geophys. Res. Lett., 38(14), L14108. https://doi.org/10.1029/2011GL048375

Ma, Q., Artemyev, A. V., Mourenas, D., Li, W., Thorne, R. M., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., … Wygant, J. (2017). Very oblique whistler mode propagation in the radiation belts: Effects of hot plasma and Landau damping. Geophys. Res. Lett., 44(24), 12057–12066. https://doi.org/10.1002/2017GL075892

Min, K., Liu, K. J., and Li, W. (2014). Signatures of electron Landau resonant interactions with chorus waves from THEMIS observations. J. Geophys. Res. Space Phys., 119(7), 5551–5560. https://doi.org/10.1002/2014JA019903

Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V., and Mozer, F. S. (2015). Very oblique whistler generation by low-energy electron streams. J. Geophys. Res. Space Phys., 120(5), 3665–3683. https://doi.org/10.1002/2015JA021135

Omura, Y., Katoh, Y., and Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. Space Phys., 113(A4), A04223. https://doi.org/10.1029/2007JA012622

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., and Yagitani, S. (2009). Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere. J. Geophys. Res. Space Phys., 114(A7), A07217. https://doi.org/10.1029/2009JA014206

Ratcliffe, H., and Watt, C. E. J. (2017). Self-consistent formation of a 0.5 cyclotron frequency gap in magnetospheric whistler mode waves. J. Geophys. Res. Space Physics, 122, 8166–8180. https://doi.org/10.1002/2017JA024399

Santolik, O., Gurnett, D. A., Pickett, J. S., Chum, J., and Cornilleau-Wehrlin, N. (2009). Oblique Propagation of whistler mode waves in the chorus source region. J. Geophys. Res. Space Phys., 114(A12), A00F03. https://doi.org/10.1029/2009JA014586

Santolik, O., Gurnett, D. A., Pickett, J. S., Grimald, S., Décreau, P. M. E., Parrot, M., Cornilleau-Wehrlin, N., El-Lemdani Mazouz, F., Schriver, D., …Fazakerley, A. (2010). Wave-particle interactions in the equatorial source region of Whistler-mode emissions. J. Geophys. Res. Space Phys., 115(A8), A00F16. https://doi.org/10.1029/2009JA015218

Sauer, K., and Sydora, R. D. (2010). Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations. Ann. Geophys., 28(6), 1317–1325. https://doi.org/10.5194/angeo-28-1317-2010

Sauer, K., and Sydora, R. D. (2011). Whistler-Langmuir oscillitons and their relation to auroral hiss. Ann. Geophys., 29(10), 1739–1753. https://doi.org/10.5194/angeo-29-1739-2011

Sauer, K., and Sydora, R. D. (2012). Mode crossing effects at electron beam-plasma interaction and related phenomena. Plasma Phys. Control. Fusion, 54(12), 124045. https://doi.org/10.1088/0741-3335/54/12/124045

Sauer, K., and Sydora, R. D. (2015). Current-driven Langmuir oscillations and amplitude modulations—Another view on electron beam-plasma interaction. J. Geophys. Res. Space Physics, 119. https://doi.org/10.1002/2014JA020409

Sauer, K., Malaspina, D. M., Pulupa, M., and Salem, C. S. (2017). Parametric decay of current- driven Langmuir waves in plateau plasmas: Relevance to solar wind and foreshock events. J. Geophys. Res, 122. https://doi.org/10.1002/2017JA024258

Sauer, K., Baumgärtel, K., Sydora, R., and Winterhalter, D. (2019). Parametric decay of Beam-generated Langmuir waves and three-wave interaction in plateau plasmas: implications for type Ⅲ radiation. J. Geophys. Res. Space Phys., 124(1), 68–89. https://doi.org/10.1029/2018JA025887

Schriver, D., Ashour-Abdalla, M., Coroniti, F. V., LeBoeuf, J. N., Decyk, V., Travnicek, P., Santolík, O., Winningham, D., Pickett, J. S., … Fazakerley, A. N. (2010). Generation of whistler mode emissions in the inner magnetosphere: an event study. J. Geophys. Res. Space Phys., 115(A8), A00F17. https://doi.org/10.1029/2009JA014932

Swanson, D. G. (2003). Plasma Waves. Bristol and Philadelphia: Institute of Physics Publishing.222

Sydora, R. D., Sauer, K., and Silin, I. (2007). Coherent whistler waves and Oscilliton formation: kinetic simulations. Geophys. Res. Lett., 34(22), L22105. https://doi.org/10.1029/2007GL031839

Tsurutani, B. T., and Smith, E. J. (1974). Postmidnight chorus: a substorm phenomenon. J. Geophys. Res., 79(1), 118–127. https://doi.org/10.1029/JA079i001p00118

Yue, C., An, X., Bortnik, J., Ma, Q. L., Li, W., Thorne, R. M., Reeves, G. D., Gkioulidou, M., Mitchell, D. G., Kletzing, C. A. (2016). The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes. Geophys. Res. Lett., 43(15), 7804–7812. https://doi.org/10.1002/2016GL070084

[1]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[2]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[3]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[4]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics. doi: 10.26464/epp2020037

[5]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[6]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[7]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[8]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[9]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[10]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[11]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[12]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[13]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, and Qi Zhu, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020060

[14]

Shucan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong XU, Safi Ullah, Abdur Rauf and Abdel Hannachid, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020061

[15]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[16]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[17]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[18]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[19]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[20]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory

Konrad Sauer, Klaus Baumgärtel, Richard Sydora