Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Guo, X. C., Zhou, Y. C., Wang, C. and Liu, Y. D. (2021). Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation. Earth Planet. Phys., 5(3), 1–9doi: 10.26464/epp2021024

doi: 10.26464/epp2021024

SPACE PHYSICS: INTERPLANETARY PHYSICS

Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation

1. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Science, Beijing 100190, China

2. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China

Corresponding author: XiaoCheng Guo, xcguo@swl.ac.cn

Received Date: 2016-07-01
Accepted Date: 2016-09-27
Web Publishing Date: 2021-05-01

Voyager 1 occasionally detected sudden jumps of the local interstellar magnetic field strength since its heliopause crossing in August 2012. These events were believed to be associated with outward propagating solar wind shocks originating in the inner heliosphere. Here we investigate the correlation between interstellar shocks and large-scale solar wind events by means of numerical MHD simulation. The solar wind is simplified as a symmetric flow near the equatorial plane, and the interstellar neutrals are treated as a constant flow with a fixed density distribution along the upwind direction of the local interstellar medium. The charge exchanges between the solar wind plasma and the interstellar neutrals are taken into account. At a heliocentric distance of 1 AU, the solar wind data from OMNI, STEREO A and B during the period between 2010 and 2017 are used as the inner boundary conditions to drive the simulation. The simulation results showed that the solar wind gradually merges into large-scale structures as the radial distance increases, consistent with observations by New Horizons. After propagating into the inner heliosheath, the shocks are fully developed and the corresponding pressure pulses roughly agree with the observations by Voyager 2 in the inner heliosheath. The arrival of the shocks beyond the heliopause is estimated and found to be consistent with the observed signatures of interstellar shocks by Voyager 1. The possible origins of interstellar shocks in the inner heliosheath are discussed based on the simulation.

Key words: MHD; outer heliosphere; solar wind; interstellar medium; shocks; Voyager

Axford, W. I. (1972). The interaction of the solar wind with the interstellar medium. In C. P. Sonnett, et al. (Eds.), Solar Wind (pp. 609-660). Washington, DC: NASA.222

Bagenal, F., Delamere, P. A., Elliott, H. A., Hill, M. E., Lisse, C. M., McComas, D. J., McNutt, R. L. Jr., Richardson, J. D., Smith, C. W., and Strobel, D. F. (2015). Solar wind at 33 AU: setting bounds on the Pluto interaction for New Horizons. J. Geophys. Res. Planets, 120(9), 1497–1511. https://doi.org/10.1002/2015JE004880

Bale, S. D., Reiner, M. J., Bougeret, J. L., Kaiser, M. L., Krucker, S., Larson, D. E., and Lin, R. P. (1999). The source region of an interplanetary type Ⅱ radio burst. Geophys. Res. Lett., 26(11), 1573–1576. https://doi.org/10.1029/1999GL900293

Bolton, S. J. (1990). One year variations in the near Earth solar wind ion density and bulk flow velocity. Geophys. Res. Lett., 17(1), 37–40. https://doi.org/10.1029/GL017i001p00037

Burlaga, L. F., Ness, N. F., and Belcher, J. W. (1997). Radial evolution of corotating merged interaction regions and flows between ≈14 AU and ≈43 AU. J. Geophys. Res., 102(A3), 4661–4671. https://doi.org/10.1029/96JA03629

Burlaga, L. F., Ness, N. F., Acuña, M. H., Lepping, R. P., Connerney, J. E. P., and Richardson, J. D. (2008). Magnetic fields at the solar wind termination shock. Nature, 454(7200), 75–77. https://doi.org/10.1038/nature07029

Burlaga, L. F., Ness, N. F., Gurnett, D. A., and Kurth, W. S. (2013). Evidence for a shock in interstellar plasma: voyager 1. Astrophys. J. Lett., 778(1), L3. https://doi.org/10.1088/2041-8205/778/1/L3

Burlaga, L. F., and Ness, N. F. (2014). Voyager 1 observations of the interstellar magnetic field and the transition from the heliosheath. Astrophys. J., 784(2), 146. https://doi.org/10.1088/0004-637X/784/2/146

Burlaga, L. F., and Ness, N. F. (2016). Observations of the interstellar magnetic field in the outer heliosheath: voyager 1. Astrophys. J., 829(2), 134. https://doi.org/10.3847/0004-637X/829/2/134

Cummings, A. C., Stone, E. C., Heikkila, B. C., Lal, N., Webber, W. R., Jóhannesson, G., Moskalenko, I. V., Orlando, E., and Porter, T. A. (2016). Galactic cosmic rays in the local interstellar medium: voyager 1 observations and model results. Astrophys. J., 831(1), 18. https://doi.org/10.3847/0004-637X/831/1/18

Fermo, R. L., Pogorelov, N. V., and Burlaga, L. F. (2015). Transient shocks beyond the heliopause. J. Phys. Conf. Ser., 642, 012008. https://doi.org/10.1088/1742-6596/642/1/012008

Florinski, V., Zank, G. P., Jokipii, J. R., Stone, E. C., and Cummings, A. C. (2004). Do anomalous cosmic rays modify the termination shock?. Astrophys. J., 610(2), 1169–1181. https://doi.org/10.1086/421901

Florinski, V., Guo, X., Balsara, D. S., and Meyer, C. (2013). Magnetohydrodynamic modeling of solar system processes on geodesic grids. Astrophys. J. Suppl. Ser., 205(2), 19. https://doi.org/10.1088/0067-0049/205/2/19

Gazis, P. R. (1987). Solar wind stream structure at large heliocentric distances: pioneer observations. J. Geophys. Res., 92(A3), 2231–2242. https://doi.org/10.1029/JA092iA03p02231

Gazis, P. R. (1996). Long-term enhancements in solar wind speed. J. Geophys. Res., 101(A1), 415–424. https://doi.org/10.1029/95JA02638

Gazis, P. R. (2000). A large-scale survey of corotating interaction regions and their successors in the outer heliosphere. J. Geophys. Res., 105(A1), 19–33. https://doi.org/10.1029/1999JA900352

Guo, X., and Florinski, V. (2014). Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum. J. Geophys. Res., 119(4), 2411–2429. https://doi.org/10.1002/2013JA019546

Guo, X. C. (2015). An extended HLLC Riemann solver for the magneto-hydrodynamics including strong internal magnetic field. J. Comput. Phys., 290, 352–363. https://doi.org/10.1016/j.jcp.2015.02.048

Gurnett, D. A., Kurth, W. S., Stone, E. C., Cummings, A. C., Krimigis, S. M., Decker, R. B., Ness, N. F., and Burlaga, L. F. (2015). Precursors to interstellar shocks of solar origin. Astrophys. J., 809, 121. https://doi.org/10.1088/0004-637X/809/2/121

Gurnett, D. A., and Kurth, W. S. (2019). Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments. Nat. Astron., 3(11), 1024–1028. https://doi.org/10.1038/s41550-019-0918-5

Intriligator, D. S., Sun, W., Dryer, M., “Ghee” Fry, C. D., Deehr, C., and Intriligator, J. (2005). From the sun to the outer heliosphere: modeling and analyses of the interplanetary propagation of the October/November (Halloween) 2003 solar events. J. Geophys. Res., 110(A9), A09S10. https://doi.org/10.1029/2004JA010939

Kim, T. K., Pogorelov, N. V., Zank, G. P., Elliott, H. A, and McC, D. J. (2016). Modeling the solar wind at the Ulysses, Voyager, and New horizons spacecraft. Astrophys. J., 832, 72. https://doi.org/10.3847/0004-637X/832/1/72

Kim, T. K., Pogorelov, N. V., and Burlaga, L. F. (2017). Modeling shocks detected by Voyager 1 in the local interstellar medium. Astrophys. J. Lett., 843(2), L32. https://doi.org/10.3847/2041-8213/aa7b2b

Krimigis, S. M., Roelof, E. C., Decker, R. B., and Hill, M. E. (2011). Zero outward flow velocity for plasma in a heliosheath transition layer. Nature, 474(7351), 359–361. https://doi.org/10.1038/nature10115

Krimigis, S. M., Decker, R. B., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., and Lanzerotti, L. J. (2013). Search for the exit: Voyager 1 at Heliosphere's border with the galaxy. Science, 341(6142), 144–147. https://doi.org/10.1126/science.1235721

Liu, Y. D., Richardson, J. D., Wang, C., and Luhmann, J. G. (2014). Propagation of the 2012 March coronal mass ejections from the Sun to heliopause. Astrophys. J. Lett., 788(2). https://doi.org/10.1088/2041-8205/788/2/L28

McComas, D., Allegrini, F., Bagenal, F., Casey, P., Delamere, P., Demkee, D., Dunn, G., Elliott, H., Hanley, J., .. Weidner, S. (2008). The Solar Wind Around Pluto (SWAP) instrument aboard New horizons. Space Sci. Rev., 140(1-4), 261–313. https://doi.org/10.1007/s11214-007-9205-3

Pauls, H. L., Zank, G. P., and Williams, L. L. (1995). Interaction of the solar wind with the local interstellar medium. J. Geophys. Res., 100(A11), 21595–21604. https://doi.org/10.1029/95JA02023

Pogorelov, N. V., Suess, S. T., Borovikov, S. N., Ebert, R. W., McComas, D. J., and Zank, G. P. (2013). Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. Ⅳ. Solar cycle model based on Ulysses observations. Astrophys. J., 772(1), 2. https://doi.org/10.1088/0004-637X/772/1/2

Richardson, J. D., Paularena, K. I., Belcher, J. W., and Lazarus, A. J. (1994). Solar wind oscillations with a 1.3 year period. Geophys. Res. Lett., 21(14), 1559–1560. https://doi.org/10.1029/94GL01076

Richardson, J. D., Wang, C., and Burlaga, L. F. (2003). Correlated solar wind speed, density, and magnetic field changes at Voyager 2. Geophys. Res. Lett., 30(23), 2207. https://doi.org/10.1029/2003GL018253

Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W., and Lazarus, A. J. (2008). Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 454(7200), 63–66. https://doi.org/10.1038/nature07024

Richardson, J. D., Wang, C., Liu, Y. D., Šafránková, J., Němeček, Z., and Kurth, W. S. (2017). Pressure pulses at Voyager 2: drivers of interstellar transients?. Astrophys. J., 834(2), 190. https://doi.org/10.3847/1538-4357/834/2/190

Richardson, J. D., Belcher, J. W., Garcia-Galindo, P., and Burlaga, L. F. (2019). Voyager 2 plasma observations of the heliopause and interstellar medium. Nat. Astron., 3(11), 1019–1023. https://doi.org/10.1038/s41550-019-0929-2

Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N., and Webber, W. R. (2013). Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science, 341(6142), 150–153. https://doi.org/10.1126/science.1236408

Usmanov, A. V., Goldstein, M. L., and Matthaeus, W. H. (2012). Three-dimensional magnetohydrodynamic modeling of the solar wind including pickup protons and turbulence transport. Astrophys. J., 754(1), 40. https://doi.org/10.1088/0004-637X/754/1/40

Wang, C., Richardson, J. D., and Gosling, J. T. (2000). A numerical study of the evolution of the solar wind from Ulysses to Voyager 2. J. Geophys. Res., 105(A2), 2337–2344. https://doi.org/10.1029/1999JA900436

Wang, C., and Richardson, J. D. (2001). Energy partition between solar wind protons and pickup ions in the distant heliosphere: a three-fluid approach. J. Geophys. Res., 106(A12), 29401–29407. https://doi.org/10.1029/2001JA000190

Wang, C., and Richardson, J. D. (2002). Development of a strong shock in the outer heliosphere. Geophys. Res. Lett., 29(8), 22-1–22-4. https://doi.org/10.1029/2001GL014472

Whang, Y. C., and Burlaga, L. F. (1985). Evolution and interaction of interplanetary shocks. J. Geophys. Res., 90(A11), 10765–10778. https://doi.org/10.1029/JA090iA11p10765

[1]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[2]

ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics. doi: 10.26464/epp2021023

[3]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[4]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics. doi: 10.26464/epp2021029

[5]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[6]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[7]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[8]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[9]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[10]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[11]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[12]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[13]

Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032

[14]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[15]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[16]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[17]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu