Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Guo, X. C., Zhou, Y. C., Wang, C. and Liu, Y. D. (2021). Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation. Earth Planet. Phys., 5(3), 1–9doi: 10.26464/epp2021024

doi: 10.26464/epp2021024


Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation


State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Science, Beijing 100190, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China

Corresponding author: XiaoCheng Guo,

Received Date: 2016-07-01
Accepted Date: 2016-09-27
Web Publishing Date: 2021-05-01

Voyager 1 occasionally detected sudden jumps of the local interstellar magnetic field strength since its heliopause crossing in August 2012. These events were believed to be associated with outward propagating solar wind shocks originating in the inner heliosphere. Here we investigate the correlation between interstellar shocks and large-scale solar wind events by means of numerical MHD simulation. The solar wind is simplified as a symmetric flow near the equatorial plane, and the interstellar neutrals are treated as a constant flow with a fixed density distribution along the upwind direction of the local interstellar medium. The charge exchanges between the solar wind plasma and the interstellar neutrals are taken into account. At a heliocentric distance of 1 AU, the solar wind data from OMNI, STEREO A and B during the period between 2010 and 2017 are used as the inner boundary conditions to drive the simulation. The simulation results showed that the solar wind gradually merges into large-scale structures as the radial distance increases, consistent with observations by New Horizons. After propagating into the inner heliosheath, the shocks are fully developed and the corresponding pressure pulses roughly agree with the observations by Voyager 2 in the inner heliosheath. The arrival of the shocks beyond the heliopause is estimated and found to be consistent with the observed signatures of interstellar shocks by Voyager 1. The possible origins of interstellar shocks in the inner heliosheath are discussed based on the simulation.

Key words: MHD; outer heliosphere; solar wind; interstellar medium; shocks; Voyager

Axford, W. I. (1972). The interaction of the solar wind with the interstellar medium. In C. P. Sonnett, et al. (Eds.), Solar Wind (pp. 609-660). Washington, DC: NASA.222

Bagenal, F., Delamere, P. A., Elliott, H. A., Hill, M. E., Lisse, C. M., McComas, D. J., McNutt, R. L. Jr., Richardson, J. D., Smith, C. W., and Strobel, D. F. (2015). Solar wind at 33 AU: setting bounds on the Pluto interaction for New Horizons. J. Geophys. Res. Planets, 120(9), 1497–1511.

Bale, S. D., Reiner, M. J., Bougeret, J. L., Kaiser, M. L., Krucker, S., Larson, D. E., and Lin, R. P. (1999). The source region of an interplanetary type Ⅱ radio burst. Geophys. Res. Lett., 26(11), 1573–1576.

Bolton, S. J. (1990). One year variations in the near Earth solar wind ion density and bulk flow velocity. Geophys. Res. Lett., 17(1), 37–40.

Burlaga, L. F., Ness, N. F., and Belcher, J. W. (1997). Radial evolution of corotating merged interaction regions and flows between ≈14 AU and ≈43 AU. J. Geophys. Res., 102(A3), 4661–4671.

Burlaga, L. F., Ness, N. F., Acuña, M. H., Lepping, R. P., Connerney, J. E. P., and Richardson, J. D. (2008). Magnetic fields at the solar wind termination shock. Nature, 454(7200), 75–77.

Burlaga, L. F., Ness, N. F., Gurnett, D. A., and Kurth, W. S. (2013). Evidence for a shock in interstellar plasma: voyager 1. Astrophys. J. Lett., 778(1), L3.

Burlaga, L. F., and Ness, N. F. (2014). Voyager 1 observations of the interstellar magnetic field and the transition from the heliosheath. Astrophys. J., 784(2), 146.

Burlaga, L. F., and Ness, N. F. (2016). Observations of the interstellar magnetic field in the outer heliosheath: voyager 1. Astrophys. J., 829(2), 134.

Cummings, A. C., Stone, E. C., Heikkila, B. C., Lal, N., Webber, W. R., Jóhannesson, G., Moskalenko, I. V., Orlando, E., and Porter, T. A. (2016). Galactic cosmic rays in the local interstellar medium: voyager 1 observations and model results. Astrophys. J., 831(1), 18.

Fermo, R. L., Pogorelov, N. V., and Burlaga, L. F. (2015). Transient shocks beyond the heliopause. J. Phys. Conf. Ser., 642, 012008.

Florinski, V., Zank, G. P., Jokipii, J. R., Stone, E. C., and Cummings, A. C. (2004). Do anomalous cosmic rays modify the termination shock?. Astrophys. J., 610(2), 1169–1181.

Florinski, V., Guo, X., Balsara, D. S., and Meyer, C. (2013). Magnetohydrodynamic modeling of solar system processes on geodesic grids. Astrophys. J. Suppl. Ser., 205(2), 19.

Gazis, P. R. (1987). Solar wind stream structure at large heliocentric distances: pioneer observations. J. Geophys. Res., 92(A3), 2231–2242.

Gazis, P. R. (1996). Long-term enhancements in solar wind speed. J. Geophys. Res., 101(A1), 415–424.

Gazis, P. R. (2000). A large-scale survey of corotating interaction regions and their successors in the outer heliosphere. J. Geophys. Res., 105(A1), 19–33.

Guo, X., and Florinski, V. (2014). Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum. J. Geophys. Res., 119(4), 2411–2429.

Guo, X. C. (2015). An extended HLLC Riemann solver for the magneto-hydrodynamics including strong internal magnetic field. J. Comput. Phys., 290, 352–363.

Gurnett, D. A., Kurth, W. S., Stone, E. C., Cummings, A. C., Krimigis, S. M., Decker, R. B., Ness, N. F., and Burlaga, L. F. (2015). Precursors to interstellar shocks of solar origin. Astrophys. J., 809, 121.

Gurnett, D. A., and Kurth, W. S. (2019). Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments. Nat. Astron., 3(11), 1024–1028.

Intriligator, D. S., Sun, W., Dryer, M., “Ghee” Fry, C. D., Deehr, C., and Intriligator, J. (2005). From the sun to the outer heliosphere: modeling and analyses of the interplanetary propagation of the October/November (Halloween) 2003 solar events. J. Geophys. Res., 110(A9), A09S10.

Kim, T. K., Pogorelov, N. V., Zank, G. P., Elliott, H. A, and McC, D. J. (2016). Modeling the solar wind at the Ulysses, Voyager, and New horizons spacecraft. Astrophys. J., 832, 72.

Kim, T. K., Pogorelov, N. V., and Burlaga, L. F. (2017). Modeling shocks detected by Voyager 1 in the local interstellar medium. Astrophys. J. Lett., 843(2), L32.

Krimigis, S. M., Roelof, E. C., Decker, R. B., and Hill, M. E. (2011). Zero outward flow velocity for plasma in a heliosheath transition layer. Nature, 474(7351), 359–361.

Krimigis, S. M., Decker, R. B., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., and Lanzerotti, L. J. (2013). Search for the exit: Voyager 1 at Heliosphere's border with the galaxy. Science, 341(6142), 144–147.

Liu, Y. D., Richardson, J. D., Wang, C., and Luhmann, J. G. (2014). Propagation of the 2012 March coronal mass ejections from the Sun to heliopause. Astrophys. J. Lett., 788(2).

McComas, D., Allegrini, F., Bagenal, F., Casey, P., Delamere, P., Demkee, D., Dunn, G., Elliott, H., Hanley, J., .. Weidner, S. (2008). The Solar Wind Around Pluto (SWAP) instrument aboard New horizons. Space Sci. Rev., 140(1-4), 261–313.

Pauls, H. L., Zank, G. P., and Williams, L. L. (1995). Interaction of the solar wind with the local interstellar medium. J. Geophys. Res., 100(A11), 21595–21604.

Pogorelov, N. V., Suess, S. T., Borovikov, S. N., Ebert, R. W., McComas, D. J., and Zank, G. P. (2013). Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. Ⅳ. Solar cycle model based on Ulysses observations. Astrophys. J., 772(1), 2.

Richardson, J. D., Paularena, K. I., Belcher, J. W., and Lazarus, A. J. (1994). Solar wind oscillations with a 1.3 year period. Geophys. Res. Lett., 21(14), 1559–1560.

Richardson, J. D., Wang, C., and Burlaga, L. F. (2003). Correlated solar wind speed, density, and magnetic field changes at Voyager 2. Geophys. Res. Lett., 30(23), 2207.

Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W., and Lazarus, A. J. (2008). Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 454(7200), 63–66.

Richardson, J. D., Wang, C., Liu, Y. D., Šafránková, J., Němeček, Z., and Kurth, W. S. (2017). Pressure pulses at Voyager 2: drivers of interstellar transients?. Astrophys. J., 834(2), 190.

Richardson, J. D., Belcher, J. W., Garcia-Galindo, P., and Burlaga, L. F. (2019). Voyager 2 plasma observations of the heliopause and interstellar medium. Nat. Astron., 3(11), 1019–1023.

Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N., and Webber, W. R. (2013). Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science, 341(6142), 150–153.

Usmanov, A. V., Goldstein, M. L., and Matthaeus, W. H. (2012). Three-dimensional magnetohydrodynamic modeling of the solar wind including pickup protons and turbulence transport. Astrophys. J., 754(1), 40.

Wang, C., Richardson, J. D., and Gosling, J. T. (2000). A numerical study of the evolution of the solar wind from Ulysses to Voyager 2. J. Geophys. Res., 105(A2), 2337–2344.

Wang, C., and Richardson, J. D. (2001). Energy partition between solar wind protons and pickup ions in the distant heliosphere: a three-fluid approach. J. Geophys. Res., 106(A12), 29401–29407.

Wang, C., and Richardson, J. D. (2002). Development of a strong shock in the outer heliosphere. Geophys. Res. Lett., 29(8), 22-1–22-4.

Whang, Y. C., and Burlaga, L. F. (1985). Evolution and interaction of interplanetary shocks. J. Geophys. Res., 90(A11), 10765–10778.


LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012


ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics. doi: 10.26464/epp2021023


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics. doi: 10.26464/epp2021029


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010


XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039


Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040


KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004


Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012


Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011


HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053


Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032


ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064


Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012


XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035


JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu