Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhang, X., and Zhang, L. F. (2020). Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau. Earth Planet. Phys., 4(3), 296–307doi: 10.26464/epp2020029

2020, 4(3): 296-307. doi: 10.26464/epp2020029

SOLID EARTH: SEISMOLOGY

Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau

1. 

Key Laboratory of Earthquake Monitoring and Disaster Reduction Technology, Guangdong Earthquake Agency, Guangzhou 510070, China

2. 

Qinghai Earthquake Agency, Xining 810001, China

Corresponding author: Xin Zhang, zxdqwl@163.com

Received Date: 2019-10-26
Web Publishing Date: 2020-05-01

Co-seismic gas leakage usually occurs on the edge of seismic faults in petroliferous basins, and it may have an impact on the local environment, such as the greenhouse effect, which can cause thermal infrared brightness anomalies. Using wavelet transform and power spectrum estimation methods, we processed brightness temperature data from the Chinese geostationary meteorological satellite FY-C/E. We report similarities between the co-seismic thermal infrared brightness (CTIB) anomalies before, during and after earthquakes that occurred at the edges of the Sichuan, Tarim, Qaidam, and Junggar basins surrounding the North and East of the Qinghai–Tibet Plateau in western China. Additionally, in each petroliferous basin, the area of a single CTIB anomaly accounted for 50% to 100% of the basin area, and the spatial distribution similarities in the CTIB anomalies existed before, during and after these earthquakes. To better interpret the similarities, we developed a basin warming effect model based on geological structures and topography. The model suggests that in a petroliferous basin with a subsurface gas reservoir, gas leakage could strengthen with the increasing stress before, during, and even after an earthquake. The accumulation of these gases, such as the greenhouse gases CH4 and CO2, results in the CTIB anomalies. In addition, we conclude that the CTIB anomalies are strengthened by the high mountains (altitude ~5000 m) around the basins and the basins’ independent climatic conditions. This work provides a new perspective from which to understand the CTIB anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau.

Key words: co-seismic thermal infrared brightness (CTIB); relative power spectrum (RPS); gas leakage; basin warming effect

Akhoondzadeh, M. (2012). Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Nat. Hazards Earth Syst. Sci., 12(5), 1453–1462. https://doi.org/10.5194/nhess-12-1453-2012

Akhoondzadeh, M. (2014). Thermal and TEC anomalies detection using an intelligent hybrid system around the time of the Saravan, Iran, (Mw=7.7) earthquake of 16 April 2013. Adv. Space Res., 53(4), 647–655. https://doi.org/10.1016/j.asr.2013.12.017

Aliano, C, Corrado, R., Filizzola, C., Genzano, N., Pergola, N., and Tramutoli, V. (2008). Robust TIR Satellite techniques for monitoring earthquake active regions: limits, main achievements and perspectives. Ann. Geophys., 51(1), 303–318. https://doi.org/10.4401/ag-3050

Anderson, J. S., Romanak, K. D., Yang, C., Yang, C. B., Lu, J. M., Hovorka, S. D., and Young, M. H. (2017). Gas source attribution techniques for assessing leakage at geologic CO2 storage sites: Evaluating a CO2 and CH4 soil gas anomaly at the Cranfield CO2-EOR site. Chem. Geol., 454, 93–104. https://doi.org/10.1016/j.chemgeo.2017.02.024

Bhardwaj, A., Singh, S., Sam, L., Joshi, P. K., Bhardwaj, A., Martín-Torres, F. J., and Kumar, R. (2017a). A review on remotely sensed land surface temperature anomaly as an earthquake precursor. Int. J. Appl. Earth Observ. Geoinform., 63, 158–166. https://doi.org/10.1016/j.jag.2017.08.002

Bhardwaj, A., Singh, S., Sam, L., Bhardwaj, A., Martín-Torres, F. J., Singh, A., and Kumar, R. (2017b). MODIS-based estimates of strong snow surface temperature anomaly related to high altitude earthquakes of 2015. Remote Sens. Environ., 188, 1–8. https://doi.org/10.1016/j.rse.2016.11.005

Blackett, M., Wooster, M. J., and Malamud, B. D. (2011). Exploring land surface temperature earthquake precursors: a focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett., 38(15), L15303. https://doi.org/10.1029/2011GL048282

Brański, P. (2009). Influence of palaeoclimate and the Green House effect on Hettangian clay mineral as sem blages (Holy Cross Mts. area, Polish Basin). Geol. Quart., 53(3), 363–368.

Chen, Z., Li, Y., Liu, Z. F., Zheng, G. D., Xu, W., Yan, W., and Yi, L. (2019a). CH4 and CO2 emissions from mud volcanoes on the southern margin of the Junggar basin, NW China: Origin, output, and relation to regional tectonics. J. Geophys. Res.: Solid Earth, 124(5), 5030–5044. https://doi.org/10.1029/2018JB016822

Chen, Z., Li, Y., Liu, Z. F., Lu, C., Zhao, Y. X., and Wang, J. (2019b). Evidence of multiple sources of soil gas in the Tangshan fault zone, North China. Geofluids, 2019, 1945450. https://doi.org/10.1155/2019/1945450

Choudhury, S., Dasgupta, S., Saraf, A. K., and Panda, S. (2006). Remote sensing observations of pre-earthquake thermal anomalies in Iran. Int. J. Remote Sens., 27(20), 4381–4396. https://doi.org/10.1080/01431160600851827

Colacino, M., and Conte, M. (1993). Greenhouse effect and pressure patterns in the Mediterranean basin. IL Nuovo Cimento C, 16(1), 67–77. https://doi.org/10.1007/BF02509211

Corrado, R., Caputo, R., Filizzola, C., Pergola, N., Pietrapertosa, C., and Tramutoli, V. (2005). Seismically active area monitoring by robust TIR satellite techniques: a sensitivity analysis on low magnitude earthquakes in Greece and Turkey. Nat. Hazards Earth Syst. Sci., 5(1), 101–108. https://doi.org/10.5194/nhess-5-101-2005

Cui, Y., Ouzounov, D., Hatzopoulos, N., Sun, K., Zou, Z., and Du, J. (2017). Satellite observation of CH4, and CO anomalies associated with the Wenchuan M S 8.0 and Lushan MS 7.0 earthquakes in China. Chem. Geol., 469, 185–191. https://doi.org/10.1016/j.chemgeo.2017.06.028

Filizzola, C., Pergola, N., Pietrapertosa, C., and Tramutoli, V. (2004). Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athens’s earthquake. Phys. Chem. Earth Parts A/B/C, 29(4-9), 517–527. https://doi.org/10.1016/j.pce.2003.11.019

Gao, F. L., Hua, Z. Z., Tao, L. R., et al. (2012). Comparative analysis of greenhouse effect of methane and carbon dioxide. Chinese Society of Engineering Thermophysics, http://ir.etp.ac.cn/handle/311046/58867222

Guo, W. Y., Shan, X. J., and Qu, C. Y. (2006). Correlation between infrared anomalous and earthquakes in Tarim basin. Arid Land Geogr. (in Chinese) , 29(5), 736–741. https://doi.org/10.3321/j.issn:1000-6060.2006.05.020

Jiao, Z. H., Zhao, J., and Shan, X. J. (2018). Pre-seismic anomalies from optical satellite observations: A review. Nat. Hazards Earth Syst. Sci., 18(4), 1013–1036. https://doi.org/10.5194/nhess-18-1013-2018

Lei, X. L., Wang, Z. W., and Su, J. R. (2019). Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan basin, China. Earth Planet. Phys., 3(6), 510–525. https://doi.org/10.26464/epp2019052

Lombardo, V., Harris, A. J. L., Calvari, S., and Buongiorno, M. F. (2009). Spatial variations in lava flow field thermal structure and effusion rate derived from very high spatial resolution hyperspectral (MIVIS) data. J. Geophys. Res. Solid Earth, 114(B2), B02208. https://doi.org/10.1029/2008JB005648

Lu, X., Meng, Q. Y., Gu, X. F., Zhang, X. D., Xie, T., and Geng, F. (2016). Thermal infrared anomalies associated with multi-year earthquakes in the Tibet region based on China’s FY-2E satellite data. Adv. Space Res., 58(6), 989–1001. https://doi.org/10.1016/j.asr.2016.05.038

Lu, Z. Q., Wu, B. H., Qiang, Z. J., and Du, L. T. (2005). Brightness temperature anomalies in satellite-based thermal infrared remote sensing along the offshore China Seas. Geoscience (in Chinese) , 19(1), 74–82. https://doi.org/10.3969/j.issn.1000-8527.2005.01.011

Ma, W. J., Kong, X. Z., Kang, C. L., Zhong, X. H., Wu, H. Y., Zhan, X. S., and Joshi, M. (2015). Research on the changes of the tidal force and the air temperature in the atmosphere of Lushan (China) MS7.0 earthquake. Therm. Sci., 19(S2), 487–493. https://doi.org/10.2298/TSCI150403148M

Ouzounov, D., and Freund, F. (2004). Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res., 33(3), 268–273. https://doi.org/10.1016/S0273-1177(03)00486-1

Pergola, N., Aliano, C., Coviello, I., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Mazzeo, G., and Tramutoli, V. (2010). Using RST approach and EOS-MODIS radiances for monitoring seismically active regions: a study on the 6 April 2009 Abruzzo earthquake. Nat. Hazards Earth Syst. Sci., 10(2), 239–249. https://doi.org/10.5194/nhess-10-239-2010

Piroddi, L., Ranieri, G., Freund, F., and Trogu, A. (2014). Geology, tectonics and topography underlined by L'Aquila earthquake TIR precursors. Geophys. J. Int., 197(3), 1532–1536. https://doi.org/10.1093/gji/ggu123

Qiang, Z. J., Dian, C. G., Huang, F. L., and Zhao, Y. (1994). A new method for searching oil by using satellite thermal infrared detection. Chin. Sci. Bull. (in Chinese) , 39(18), 1725–1726.

Qiang, Z. J., Dian, C. G., Li, L. Z., Xu, M., Ge, F. S., Liu, T., Zhao, Y., and Guo, M. H. (1999). Satellitic thermal infrared brightness temperature anomaly image—short-term and impending earthquake precursors. Sci. China, 42(3), 313–324. https://doi.org/10.1007/BF02878968

Qin, K., Wu, L. X., De Santis, A., and Cianchini, G. (2012). Preliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy). Ann. Geophys., 55(4), 823–828. https://doi.org/10.4401/ag-6123

Rawat, V., Saraf, A. K., Das, J., Sharma, K., and Shujat, Y. (2011). Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania. Nat. Hazards, 59(1), 33–46. https://doi.org/10.1007/s11069-011-9736-5

Rinaldi, A. P., Jeanne, P., Rutqvist, J., Cappa, F., and Guglielmi, Y. (2014). Effects of fault-zone architecture on earthquake magnitude and gas leakage related to CO2 injection in a multi-layered sedimentary system. Greenhouse Gases Sci. Technol., 4(1), 99–120. https://doi.org/10.1002/ghg.1403

Saradjian, M. R., and Akhoondzadeh, M. (2011). Thermal anomalies detection before strong earthquakes (M > 6.0) using interquartile, wavelet and Kalman filter methods. Nat. Hazards Earth Syst. Sci., 11(4), 1099–1108. https://doi.org/10.5194/nhess-11-1099-2011

Saraf, A. K., Rawat, V., Das, J., Zia, M., and Sharma, K. (2012). Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes. Nat. Hazards, 61(2), 861–872. https://doi.org/10.1007/s11069-011-9922-5

Tronin, A. A. (1996). Satellite thermal survey–a new tool for the study of seismoactive regions. Int. J. Remote Sens., 17(8), 1439–1455. https://doi.org/10.1080/01431169608948716

Tronin, A. A. (2000a). Thermal IR satellite sensor data application for earthquake research in China. Int. J. Remote Sens., 21(16), 3169–3177. https://doi.org/10.1080/01431160050145054

Tronin, A. A. (2000b). Thermal satellite data for earthquake research. In IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Honolulu: IEEE. https://doi.org/10.1109/IGARSS.2000.859687222

Tronin, A. A. (2009). Satellite remote sensing in seismology. A review. Remote Sens., 2(1), 124–150. https://doi.org/10.3390/rs2010124

Xie, T., Kang, C. L., and Ma, W. Y. (2013). Thermal infrared brightness temperature anomalies associated with the Yushu (China) Ms = 7.1 earthquake on 14 April 2010. Nat. Hazards Earth Syst. Sci., 13(4), 1105–1111. https://doi.org/10.5194/nhess-13-1105-2013

Xie, T., and Ma, W. Y. (2015). Possible thermal brightness temperature anomalies associated with the Lushan (China) MS7.0 earthquake on 20 April 2013. Earthq. Sci., 28(1), 37–47. https://doi.org/10.1007/s11589-014-0106-8

Xiong, P., Shen, X. H., Gu, X. F., Meng, Q. Y., Zhao, L. M., Zhao, Y. H., Li, Y., and Dong, J. Y. (2015). Seismic infrared anomalies detection in the case of the Wenchuan earthquake using bi-angular advanced along-track scanning radiometer data. Ann. Geophys., 58(2), 1–11. https://doi.org/10.4401/ag-6706

Zhang, Y. S., Guo, X., Zhong, M. J., Shen, W. R., Li, W., and He, B. (2010). Wenchuan earthquake: Brightness temperature changes from satellite infrared information. Chin. Sci. Bull., 55(18), 1917–1924. https://doi.org/10.1007/s11434-010-3016-8

[1]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

[2]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[3]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[4]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[5]

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics. doi: 10.26464/epp2020046

[6]

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027

[7]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[8]

Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics. doi: 10.26464/epp2020044

[9]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

[10]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[11]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics. doi: 10.26464/epp2020050

[12]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[13]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

[14]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[15]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[16]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics. doi: 10.26464/epp2020064

[17]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[18]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[19]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[20]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau

Xin Zhang, LiFeng Zhang