Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Gong, Y., Ma, Z., Li, C., Lv, X. D., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Yu, Y., and Li, G. Z. (2020). Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017. Earth Planet. Phys., 4(3), 274–284doi: 10.26464/epp2020033

2020, 4(3): 274-284. doi: 10.26464/epp2020033

Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017

1. 

School of Electronic Information, Wuhan University, Wuhan 430079, China

2. 

Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430079, China

3. 

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

4. 

Electrical and Computer Engineering Department, Miami University, Oxford, Ohio, USA

5. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Yun Gong, yun.gong@whu.edu.cnShaoDong Zhang, zsd@whu.edu.cn

Received Date: 2020-03-19
Web Publishing Date: 2020-05-01

This study presents an analysis of the quasi-16-day wave (Q16DW) at three stations in the middle latitudes by using a meteor radar chain in conjunction with Aura Microwave Limb Sounder temperature data and MERRA2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) reanalysis data from 2008 to 2017. The radar chain consists of three meteor radar stations located at Mohe (MH, 53.5°N, 122.3°E), Beijing (BJ, 40.3°N, 116.2°E), and Wuhan (WH, 30.5°N, 114.6°E). The Q16DW wave exhibits similar seasonal variation in the neutral wind and temperature, and the Q16DW amplitude is generally strong during winter and weak around summer. The Q16DW at BJ was found to have secondary enhancement around September in the zonal wind, which is rarely reported at similar latitudes. The latitudinal variations of the Q16DW in the neutral wind and temperature are quite different. The Q16DW at BJ is the most prominent in both neutral wind components among the three stations and the Q16DW amplitudes at MH and WH are comparable, whereas the wave amplitude in temperature decreases with decreasing latitude. The quasi-geostrophic refractive index squared at the three stations in the period from 2008 to 2017 was revealed. The results indicate that the Q16DW in the mesosphere and lower thermosphere (MLT) at MH has a limited contribution from the lower atmosphere. Around March and October, the Q16DW in the troposphere at BJ can propagate upward into the MLT region, whereas at WH, the contribution to the Q16DW in the MLT region is largely from the mesosphere.

Key words: quasi-16-day waves; seasonal variations; meteor radar winds; Aura MLS temperature; generation mechanisms

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics. London: Academic Press.222

Araújo, L. R., Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H. (2014). Planetary wave seasonality from meteor wind measurements at 7.4°S and 22.7°S. Ann. Geophys., 32(5), 519–531. https://doi.org/10.5194/angeo-32-519-2014

Charney, J. G., and Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66(1), 83–109. https://doi.org/10.1029/JZ066i001p00083

Day, K. A., Hibbins, R. E., and Mitchell, N. J. (2011). Aura MLS observations of the westward-propagating s=1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere. Atmos. Chem. Phys., 11(9), 4149–4161. https://doi.org/10.5194/acp-11-4149-2011

Day, K. A., Taylor, M. J., and Mitchell, N. J. (2012). Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42° N, 111° W). Atmos. Chem. Phys., 12(3), 1571–1585. https://doi.org/10.5194/acp-12-1571-2012

Espy, P. J., Stegman, J., and Witt, G. (1997). Interannual variations of the quasi-16-day oscillation in the polar summer mesospheric temperature. J. Geophys. Res.: Atmos., 102(D2), 1983–1990. https://doi.org/10.1029/96JD02717

Forbes, J. M., Hagan, M. E., Miyahara, S., Vial, F., Manson, A. H., Meek, C. E., and Portnyagin, Y. I. (1995). Quasi 16-day oscillation in the mesosphere and lower thermosphere. J. Geophys. Res.: Atmos., 100(D5), 9149–9163. https://doi.org/10.1029/94JD02157

Gan, Q., Yue, J., Chang, L. C., Wang, W. B., Zhang, S. D., and Du, J. (2015). Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere. Ann. Geophys., 33(7), 913–922. https://doi.org/10.5194/angeo-33-913-2015

Gong, Y., Li, C., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Li, G. Z., and Ning, B. Q. (2018). Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J. Geophys. Res.: Atmos., 123(17), 9474–9487. https://doi.org/10.1029/2018JD029355

Gong, Y., Wang, H. L., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., and Huang, K. M. (2019). A statistical analysis of the propagating quasi 16-day waves at high latitudes and their response to sudden stratospheric warmings from 2005 to 2018. J. Geophys. Res.: Atmos., 124(23), 12617–12630. https://doi.org/10.1029/2019JD031482

Guharay, A., Prado Batista, P., Clemesha, B. R., Buriti, R. A., and Schuch, N. J. (2016). Latitudinal variability of the quasi-16-day wave in the middle atmosphere over Brazilian stations. Ann. Geophys., 34(4), 411–419. https://doi.org/10.5194/angeo-34-411-2016

Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol.-Terr. Phys., 63(2-3), 155–169. https://doi.org/10.1016/S1364-6826(00)00138-3

Huang, C. M., Zhang, S. D., Chen, G., Zhang, S. Y., and Huang, K. M. (2017). Planetary wave characteristics in the lower atmosphere over Xianghe (117.00°E, 39.77°N), China, revealed by the Beijing MST radar and MERRA data. J. Geophys. Res.: Atmos., 122(18), 9745–9758. https://doi.org/10.1002/2017JD027029

Huang, Y. Y., Zhang, S. D., Li, C. Y., Li, H. J., Huang, K., and Huang, C. M. (2017). Annual and interannual variations in global 6.5DWs from 20–110 km during 2002–2016 observed by TIMED/SABER. J. Geophys. Res.: Space Phys., 122(8), 8985–9002. https://doi.org/10.1002/2017JA023886

Jacobi, C., Schminder, R., and Kürschner, D. (1998a). Planetary wave activity obtained from long-period (2–18 days) variations of mesopause region winds over Central Europe (52°N, 15°E). J. Atmos. Sol.-Terr. Phys., 60(1), 81–93. https://doi.org/10.1016/S1364-6826(97)00117-X

Jacobi, C., Schminder, R., and Kürschner, D. (1998b). Long-period (12–25 days) oscillations in the summer mesopause region as measured at Collm (52°N, 15°E) and their dependence on the equatorial quasi-biennial oscillation. Contrib. Atmos. Phys., 71(4), 461–464.

Jiang, G. Y., Xiong, J. G., Wan, W. X., Ning, B. Q., Liu, L. B., Vincent, R. A., and Reid, I. (2005). The 16-day waves in the mesosphere and lower thermosphere over Wuhan (30.6°N, 114.5°E) and Adelaide (35°S, 138°E). Adv. Space Res., 35(11), 2005–2010. https://doi.org/10.1016/j.asr.2005.03.011

John, S. R., and Kumar, K. K. (2016). Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere. Climate Dyn., 47(12), 3863–3881. https://doi.org/10.1007/s00382-016-3046-2

Kingsley, S. P., Muller, H. G., Nelson, L., and Scholefield, A. (1978). Meteor winds over Sheffield (53°N, 2°W). J. Atmos. Terr. Phys., 40(8), 917–922. https://doi.org/10.1016/0021-9169(78)90143-5

Kishore, P., Namboothiri, S. P., Igarashi, K., Gurubaran, S., Sridharan, S., Rajaram, R., and Ratnam, M. V. (2004). MF radar observations of 6.5-day wave in the equatorial mesosphere and lower thermosphere. J. Atmos. Sol.-Terr. Phys., 66(6-9), 507–515. https://doi.org/10.1016/j.jastp.2004.01.026

Li, G. Z., Ning, B. Q., Hu, L. H., Chu, Y. H., Reid, I. M., and Dolman, B. K. (2012). A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. J. Geophys. Res. Space Phys., 117(A3), A03310. https://doi.org/10.1029/2011JA016847

Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H. (2006). 16-day wave observed in the meteor winds at low latitudes in the southern hemisphere. Adv. Space Res., 38(11), 2615–2620. https://doi.org/10.1016/j.asr.2006.03.033

Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L., Valle, L. F., Pumphrey, H. C., Santee, M. L., … Lay, R. R. (2017). EOS MLS version 4.2x Level 2 data quality and description document. Jet Propulsion Laboratory, California Institution of Technology, https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf222

Luo, Y., Manson, A. H., Meek, C. E., Meyer, C. K., and Forbes, J. M. (2000). The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980–1996. J. Geophys. Res.: Atmos., 105(D2), 2125–2138. https://doi.org/10.1029/1999JD900979

Luo, Y., Manson, A. H., Meek, C. E., Thayaparan, T., MacDougall, J., and Hocking, W. K. (2002a). The 16-day wave in the mesosphere and lower thermosphere: simultaneous observations at Saskatoon (52°N, 107°W) and London (43°N, 81°W), Canada. J. Atmos. Sol.-Terr. Phys., 64(8–11), 1287–1307. https://doi.org/10.1016/S1364-6826(02)00042-1

Luo, Y., Manson, A. H., Meek, C. E., Meyer, C. K., Burrage, M. D., Fritts, D. C., Hall, C. M., Hocking, W. K., MacDougall, J., … Vincent, R. A. (2002b). The 16-day planetary waves: multi-mf radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results. Ann. Geophys., 20(5), 691–709. https://doi.org/10.5194/angeo-20-691-2002

Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Yu, Y., Li, G. Z., Ning, B. Q., and Li, C. (2017). Responses of quasi 2 day waves in the MLT region to the 2013 SSW revealed by a meteor radar chain. Geophys. Res. Lett., 44(18), 9142–9150. https://doi.org/10.1002/2017GL074597

Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Dong, W. J., Li, G. Z., and Ning, B. Q. (2018). Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results. J. Geophys. Res.: Atmos., 123(17), 9488–9501. https://doi.org/10.1029/2018JD028799

Malinga, S. B., and Poole, L. M. G. (2002a). The 16-day variation in the mean flow at Grahamstown (33.3° S, 26.5° E). Ann. Geophys., 20(12), 2027–2031. https://doi.org/10.5194/angeo-20-2027-2002

Malinga, S. B., and Poole, L. M. G. (2002b). The 16-day variation in tidal amplitudes at Grahamstown (33.3° S, 26.5° E). Ann. Geophys., 20(12), 2033–2038. https://doi.org/10.5194/angeo-20-2033-2002

Manson, A. H., and Meek, C. E. (1986). Dynamics of the middle atmosphere at Saskatoon (52°N, 107°W): A spectral study during 1981, 1982. J. Atmos. Sol.-Terr. Phys., 48(11–12), 1039–1055. https://doi.org/10.1016/0021-9169(86)90025-5

Manson, A. H., Meek, C. E., Chshyolkova, T., Avery, S. K., Thorsen, D., MacDougall, J. W., Hocking, W., Murayama, Y., Igarashi, K., … Kishore, P. (2004). Longitudinal and latitudinal variations in dynamic characteristics of the MLT (70–95 km): a study involving the CUJO network. Ann. Geophys., 22(2), 347–365. https://doi.org/10.5194/angeo-22-347-2004

McDonald, A. J., Hibbins, R. E., and Jarvis, M. J. (2011). Properties of the quasi 16 day wave derived from EOS MLS observations. J. Geophys. Res. Atmos., 116(D6), D06112. https://doi.org/10.1029/2010JD014719

Mitchell, N. J., Middleton, H. R., Beard, A. G., Williams, P. J. S., and Muller, H. G. (1999). The 16-day planetary wave in the mesosphere and lower thermosphere. Ann. Geophys., 17(11), 1447–1456. https://doi.org/10.1007/s00585-999-1447-9

Miyoshi, Y. (1999). Numerical simulation of the 5-day and 16-day waves in the mesopause region. Earth Planets Space, 51(7-8), 763–772. https://doi.org/10.1186/BF03353235

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev., 8(5), 1339–1356. https://doi.org/10.5194/gmd-8-1339-2015

Namboothiri, S. P., Kishore, P., and Igarashi, K. (2002). Climatological studies of the quasi 16-day oscillations in the mesosphere and lower thermosphere at Yamagawa (31.2°N, 130.6°E). Japan. Ann. Geophys., 20(8), 1239–1246. https://doi.org/10.5194/angeo-20-1239-2002

Pancheva, D. V., Mukhtarov, P. J., Mitchell, N. J., Fritts, D. C., Riggin, D. M., Takahashi, H., Batista, P. P., Clemesha, B. R., Gurubaran, S., and Ramkumar, G. (2008). Planetary wave coupling (5-6-day waves) in the low-latitude atmosphere-ionosphere system. J. Atmos. Sol.-Terr. Phys., 70(1), 101–122. https://doi.org/10.1016/j.jastp.2007.10.003

Randel, W. J. (1988). The seasonal evolution of planetary-waves in the Southern-Hemisphere stratosphere and troposphere. Q. J. R. Meteorol. Soc., 114(484), 1385–1409. https://doi.org/10.1002/qj.49711448403

Riggin, D. M., Liu, H. L., Lieberman, R. S., Roble, R. G., Russell III, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., … Vincent, R. A. (2006). Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Sol.-Terr. Phys., 68(3-5), 323–339. https://doi.org/10.1016/j.jastp.2005.05.010

Salby, M. L. (1981a). Rossby normal modes in nonuniform background configurations. Part I: Simple fields. J. Atmos. Sci., 38(9), 1803–1826. https://doi.org/10.1175/1520-0469(1981)038<1803:RNMINB>2.0.CO;2

Salby, M. L. (1981b). Rossby normal modes in nonuniform background configurations. Part II. Equinox and solstice conditions. J. Atmos. Sci., 38(9), 1827–1840. https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2

Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., … Wu, D. L. (2008). Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. Atmos., 113(D15), D15S11. https://doi.org/10.1029/2007JD008783

Smith, A. K. (2003). The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci., 60(24), 3033–3041. https://doi.org/10.1175/1520-0469(2003)060<3033:toospw>2.0.co;2

Takahashi, H., Shiokawa, K., Egito, F., Murayama, Y., Kawamura, S., and Wrasse, C. M. (2013). Planetary wave induced wind and airglow oscillations in the middle latitude MLT region. J. Atmos. Sol.-Terr. Phys., 98, 97–104. https://doi.org/10.1016/j.jastp.2013.03.014

Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 1–11.

Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., … Dodge, R. (2006). The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44(5), 1075–1092. https://doi.org/10.1109/TGRS.2006.873771

Williams, C. R., and Avery, S. K. (1992). Analysis of long-period waves using the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. J. Geophys. Res.: Atmos., 97(D18), 20855–20861. https://doi.org/10.1029/92JD02052

Wu, D. L., Hays, P. B., and Skinner, W. R. (1995). A least squares method for spectral analysis of space-time series. J. Atmos. Sci., 52(20), 3501–3511. https://doi.org/10.1175/1520-0469(1995)052<3501:alsmfs>2.0.co;2

Yu, Y., Wan, W. X., Ning, B. Q., Liu, L. B., Wang, Z. G., Hu, L. H., and Ren, Z. P. (2013). Tidal wind mapping from observations of a meteor radar chain in December 2011. J. Geophys. Res.: Space Phys., 118(5), 2321–2332. https://doi.org/10.1029/2012JA017976

[1]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[2]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[3]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[4]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[5]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[6]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[7]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[8]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[9]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, and Qi Zhu, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020060

[10]

Shucan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong XU, Safi Ullah, Abdur Rauf and Abdel Hannachid, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020061

[11]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[12]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[13]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[14]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[15]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[16]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[17]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[18]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics. doi: 10.26464/epp2020039

[19]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics. doi: 10.26464/epp2020047

[20]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li