Citation:
Li, Y. K., and Chao, J. P. (2022). A two-dimensional energy balance climate model on Mars. Earth Planet. Phys., 6(3), 284–293. http://doi.org/10.26464/epp2022026
2022, 6(3): 284-293. doi: 10.26464/epp2022026
A two-dimensional energy balance climate model on Mars
1. | College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China |
2. | National Marine Environmental Forecasting Center, Beijing 100081, China |
A two-dimensional energy balance climate model has been built to investigate the climate on Mars. The model takes into account the balance among solar radiation, longwave radiation, and energy transmission and can be solved analytically by Legendre polynomials. With the parameters for thermal diffusion and radiation processes being properly specified, the model can simulate a reasonable surface atmospheric temperature distribution but not a very perfect vertical atmospheric temperature distribution compared with numerical results, such as those from the Mars Climate Database. With varying solar radiation in a Martian year, the model can simulate the seasonal variation of the air temperature on Mars. With increasing dust content, the Martian atmosphere gradually warms. However, the warming is insignificant in the cold and warm scenarios, in which the dust mixing ratio varies moderately, whereas the warming is significant in the storm scenario, in which the dust mixing ratio increases dramatically. With an increasing albedo value of either the polar cap or the non-ice region, Mars gradually cools. The mean surface atmospheric temperature decreases moderately with an increasing polar ice albedo, whereas it increases dramatically with an increasing non-ice albedo. This increase occurs because the planetary albedo of the ice regions is smaller than that of the non-ice region.
Appelbaum, J., Landis, G. A., and Sherman, I. (1993). Solar radiation on Mars—Update 1991. Solar Energy, 50(1), 35–51.222 |
Barlow, N. (2014). Mars: An Introduction to Its Interior, Surface and Atmosphere. Cambridge, UK: Cambridge University Press.222 |
Barnes, J. R., Haberle, R. M., Pollack, J. B., Lee, H., and Schaeffer, J. (1996). Mars atmospheric dynamics as simulated by the NASA Ames general circulation model: 3. Winter quasi-stationary eddies. J. Geophys. Res.:Planets, 101(E5), 12753–12776. https://doi.org/10.1029/96JE00179 |
Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the earth. Tellus, 21(5), 611–619. https://doi.org/10.3402/tellusa.v21i5.10109 |
Clifford, S. M., Crisp, D., Fisher, D. A., Herkenhoff, K. E., Smrekar, S. E., Thomas, P. C., Wynn-Williams, D. D., Zurek, R. W., Barnes, J. R., … Jay Zwally, H. (2000). The state and future of Mars polar science and exploration. Icarus, 144(2), 210–242. https://doi.org/10.1006/icar.1999.6290 |
Conrath, B. J. (1975). Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971. Icarus, 24(1), 36–46.222 |
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res.:Planets, 104(E10), 24155–24175. https://doi.org/10.1029/1999JE001025 |
Haberle, R. M., Pollack, J. B., Barnes, J. R., Zurek, R. W., Leovy, C. B., Murphy, J. R., Lee, H., and Schaeffer, J. (1993). Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation. J. Geophys. Res.:Planets, 98(E2), 3093–3123. https://doi.org/10.1029/92JE02946 |
Haberle, R. M., Tyler, D., McKay, C. P., and Davis, W. L. (1994). A model for the evolution of CO2 on Mars. Icarus, 109(1), 102–120. https://doi.org/10.1006/icar.1994.1079 |
Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., and Zurek, R. W. (2017). The Atmosphere and Climate of Mars. Cambridge, UK: Cambridge University Press.222 |
Heavens, N. G., Richardson, M. I., Kleinböhl, A., Kass, D. M., McCleese, D. J., Abdou, W., Benson, J. L., Schofield, J. T., Shirley, J. H., and Wolkenberg, P. M. (2011). The vertical distribution of dust in the Martian atmosphere during northern spring and summer: Observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res.:Planets, 116(E4), E04003. https://doi.org/10.1029/2010JE003691 |
Heavens, N. G., Kass, D. M., Kleinböhl, A., and Schofield, J. T. (2020). A multiannual record of gravity wave activity in Mars’s lower atmosphere from on-planet observations by the Mars Climate Sounder. Icarus, 341, 113630. https://doi.org/10.1016/j.icarus.2020.113630 |
Hoffert, M. I., Callegari, A. J., Hsieh, C. T., and Ziegler, W. (1981). Liquid water on Mars: An energy balance climate model for CO2/H2O atmospheres. Icarus, 47(1), 112–129. https://doi.org/10.1016/0019-1035(81)90096-8 |
Hollingsworth, J. L., Haberle, R. M., Barnes, J. R., Bridger, A. F. C., Pollack, J. B., Lee, H., and Schaeffer, J. (1996). Orographic control of storm zones on Mars. Nature, 380, 413–416. https://doi.org/10.1038/380413a0 |
Holmes, J. A., Lewis, S. R., and Patel, M. R. (2020). OpenMARS: A global record of Martian weather from 1999 to 2015. Planet. Space Sci., 188, 104962. https://doi.org/10.1016/j.pss.2020.104962 |
James, P. B., and North, G. R. (1982). The seasonal CO2 cycle on Mars: An application of an energy balance climate model. J. Geophys. Res.:Solid Earth, 87(B12), 10271–10283. https://doi.org/10.1029/JB087iB12p10271 |
Kuo, H. L. (1973). On a simplified radiative-conductive heat transfer equation. Pure Appl. Geophys., 109(1), 1870–1876. https://doi.org/10.1007/BF00876111 |
Leovy, C., and Mintz, Y. (1969). Numerical simulation of the atmospheric circulation and climate of Mars. J. Atmos. Sci., 26(6), 1167–1190. https://doi.org/10.1175/1520-0469(1969)026<1167:NSOTAC>2.0.CO;2 |
Lewis, S. R., Collins, M., Read, P. L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., and Huot, J. P. (1999). A climate database for Mars. J. Geophys. Res.:Planets, 104(E10), 24177–24194. https://doi.org/10.1029/1999JE001024 |
Li, Y. K., and Chao, J. P. (2014). Two-dimensional energy balance model and its application to some climatic issues. J. Meteor. Res., 28(5), 747–761. https://doi.org/10.1007/s13351-014-4027-1 |
Liu, K., Hao, X. J., Li, Y. R., Zhang, T. L., Pan, Z. H., Chen, M. M., Hu, X. W., Li, X., Shen, C. L., and Wang, Y. M. (2020). Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1. Earth Planet. Phys., 4(4), 384–389. https://doi.org/10.26464/epp2020058 |
Lü, Y. H., and Chao, J. P. (1981). A climatic theory of temperature distribution of certain planetary atmosphere. Chin. J. Atmos. Sci. (in Chinese) |
Millour, E., Forget, F., and Lewis, S. R. (2008). Mars Climate Database V4.3 Detailed Design Document.222 |
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., … Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034 |
Murphy, J. R., Pollack, J. B., Haberle, R. M., Leovy, C. B., Toon, O. B., and Schaeffer, J. (1995). Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res.:Planets, 100(E12), 26357–26376. https://doi.org/10.1029/95JE02984 |
Nakamura, T., and Tajika, E. (2001). Stability and evolution of the climate system of Mars. Earth, Planets, Space, 53(8), 851–859.222 |
Nakamura, T., and Tajika, E. (2002). Stability of the Martian climate system under the seasonal change condition of solar radiation. J. Geophys. Res.:Planets, 107(E11), 5094. https://doi.org/10.1029/2001JE001561 |
North, G. R. (1975). Analytical solution to a simple climate model with diffusive heat transport. J. Atmos. Sci., 32(7), 1301–1307. https://doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2 |
Peng, Y. Q., Zhang, L. B., Cai, Z. G., Wang, Z. G., Jiao, H. L., Wang, D. L., Yang, X. T., Wang, L. G., Tan, X., Wang, F., Fang, J., Sun, Z. L., Feng, H. L., Huang, X. R., Zhu, Y., Chen, M., Li, L. H., and Li, Y. H. (2020). Overview of the Mars climate station for Tianwen-1 mission. Earth Planet. Phys., 4(4), 371–383. https://doi.org/10.26464/epp2020057 |
Pierrehumbert, R. T. (2010). Principles of Planetary Climate. Cambridge, UK: Cambridge University Press.222 |
Piqueux, S., Byrne, S., Kieffer, H. H., Titus, T. N., and Hansen, C. J. (2015). Enumeration of Mars years and seasons since the beginning of telescopic exploration. Icarus, 251, 332–338. https://doi.org/10.1016/j.icarus.2014.12.014 |
Pollack, J. B., Leovy, C. B., Greiman, P. W., and Mintz, Y. (1981). A Martian general circulation experiment with large topography. J. Atmos. Sci., 38(1), 3–29. https://doi.org/10.1175/1520-0469(1981)038<0003:AMGCEW>2.0.CO;2 |
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987). The case for a wet, warm climate on early Mars. Icarus, 71(2), 203–224. https://doi.org/10.1016/0019-1035(87)90147-3 |
Pollack, J. B., Haberle, R. M., Schaeffer, J., and Lee, H. (1990). Simulations of the general circulation of the Martian atmosphere: 1. Polar processes. J. Geophys. Res.:Solid Earth, 95(B2), 1447–1473. https://doi.org/10.1029/JB095iB02p01447 |
Read, P. L., Collins, M., Forget, F., Fournier, R., Hourdin, F., Lewis, S. R., Talagrand, O., Taylor, F. W., and Thomas, N. P. J. (1997). A GCM climate database for Mars: For mission planning and for scientific studies. Adv. Space Res., 19(8), 1213–1222. https://doi.org/10.1016/S0273-1177(97)00272-X |
Savijärvi, H. (2014). A toy climate model for Mars. Icarus, 242, 105–111. https://doi.org/10.1016/j.icarus.2014.07.029 |
Sellers, W. D. (1969). A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor., 8(3), 392–400. https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2 |
Smith, A. J. R. W., Mandell, A. M., Villanueva, G. L., and Dane Moore, M. (2020). Utilizing a database of simulated geometric albedo spectra for photometric characterization of rocky exoplanet atmospheres. Astron. J., 160(5), 204. https://doi.org/10.3847/1538-3881/abb4eb |
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167(1), 148–165.222 |
Taubenberger, C. J. (2020). Energy Balance Models with Realistic Albedo, Monthly Insolation, Milankovitch Cycles, and Simplified Earth-Like Planetary Modeling. Fairfax, Virginia: George Mason University.222 |
Titus, T. N., and Cushing, G. E. (2014). Monitoring the Mars polar caps during Mars years 24–28. Presented at 45th Lunar and Planetary Science Conference. The Woodlands, Texas.222 |
Wang, C., Forget, F., Bertrand, T., Spiga, A., Millour, E., and Navarro, T. (2018). Parameterization of rocket dust storms on mars in the LMD Martian GCM: Modeling details and validation. J. Geophys. Res.:Planets, 123(4), 982–1000. https://doi.org/10.1002/2017JE005255 |
Wu, Z. P., Richardson, M. I., Zhang, X., Cui, J., Heavens, N. G., Lee, C., Li, T., Lian, Y., Newman, C. E., … Witek, M. (2021). Large eddy simulations of the dusty Martian convective boundary layer with MarsWRF. J. Geophys. Res.:Planets, 126(9), e2020JE006752. https://doi.org/10.1029/2020JE006752 |
[1] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[2] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[3] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[4] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[5] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[6] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[7] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[8] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[9] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[10] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[11] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[12] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[13] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[14] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[15] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[16] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[17] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[18] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[19] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[20] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)