Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Chen, C. X., and Wang, C. P. (2019). Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail. Earth Planet. Phys., 3(6), 474–480.doi: 10.26464/epp2019049

2019, 3(6): 474-480. doi: 10.26464/epp2019049

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA

Corresponding author: ChuXin Chen, chuxin@ustc.edu.cn

Received Date: 2019-06-25
Web Publishing Date: 2019-11-01

The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet. Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows (BBFs) transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods. In this paper, we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently. If both ions and electrons are non-adiabatically accelerated only once within each reconnection, the temperature ratio would be preserved. However, when reconnection occurs closer to the Earth where magnetic field lines are shorter, particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection; and electrons, moving faster than ions, can have more crossings than do ions, leading to electrons being accelerated more than ions. Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection, electrons should be accelerated by the reconnection electric field more times than are ions, which can explain the lower temperature ratios observed closer to the Earth.

Key words: the ion-to-electron temperature ratio; plasma sheet; patchy magnetic reconnection; non-adiabatical acceleration

Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman, W. C., and Gosling, J. T. (1994). Statistical characteristics of bursty bulk flow events. J. Geophys. Res. Space Phys., 99(A11), 21257–21280. https://doi.org/10.1029/94JA01263

Borovsky, J. E., Thomsen, M. F., Elphic, R. C., Cayton, T. E., and McComas, D. J. (1998). The transport of plasma sheet material from the distant tail to geosynchronous orbit. J. Geophys. Res. Space Phys., 103(A9), 20297–20331. https://doi.org/10.1029/97JA03144

Büchner, J., and Zelenyi, L. M. (1989). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. Space Phys., 94(A9), 11821–11842. https://doi.org/10.1029/JA094iA09p11821

Chen, C. X., and Wolf, R. A. (1999). Theory of thin-filament motion in Earth’s magnetotail and its application to bursty bulk flows. J. Geophys. Res. Space Phys., 104(A7), 14613–14626. https://doi.org/10.1029/1999JA900005

Chen, C. X. (2013). Theoretical constraints on the cross-tail width of bursty bulk flows. Ann. Geophys., 31(12), 2179–2192. https://doi.org/10.5194/angeo-31-2179-2013

Chen, C. X. (2016). Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy. Geophys. Res. Lett., 43(10), 4834–4840. https://doi.org/10.1002/2016GL069114

Hardy, D. A., Gussenhoven, M. S., and Brautigam, D. (1989). A statistical model of auroral ion precipitation. J. Geophys. Res. Space Phys., 94(A1), 370–392. https://doi.org/10.1029/JA094iA01p00370

Hill, T. W. (1975). Magnetic merging in a collisionless plasma. J. Geophys. Res., 80(34), 4689–4699. https://doi.org/10.1029/JA080i034p04689

Kiehas, S. A., Runov, A., Angelopoulos, V., Hietala, H., and Korovinksiy, D. (2018). Magnetotail fast flow occurrence rate and dawn-dusk asymmetry at XGMS ~ –60 RE. J. Geophys. Res. Space Phys., 123(3), 1767–1778. https://doi.org/10.1002/2017JA024776

Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk, M., Asano, Y., Vörös, Z., Zhang, T. L., … Balogh, A. (2004). Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett., 31(9), L09804. https://doi.org/10.1029/2004GL019558

Onsager, T. G., Thomsen, M. F., Elphic, R. C., and Gosling, J. T. (1991). Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. Space Phys., 96(A12), 20999–21011. https://doi.org/10.1029/91JA01983

Onsager, T. G., Scudder, J. D., Lockwood, M., and Russell, C. T. (2001). Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. J. Geophys. Res. Space Phys., 106(A11), 25467–25488. https://doi.org/10.1029/2000JA000444

Paschmann, G., Haaland, S., and Treumann, R. (2003). In situ measurements in the auroral plasma. In G. Paschmann, et al. (Eds.), Auroral Plasma Physics (pp. 93-208). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-1086-3222

Raj, A., Phan, T., Lin, R. P., and Angelopoulos, V. (2002). Wind survey of high-speed bulk flows and field-aligned beams in the near-Earth plasma sheet. J. Geophys. Res. Space Phys., 107(A12), SMP 3-1–SMP 3-17. https://doi.org/10.1029/2001JA007547

Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., and Russell, C. T. (1984). A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. J. Geophys. Res. Space Phys., 89(A2), 786–800. https://doi.org/10.1029/JA089iA02p00786

Schriver, D., Ashour-Abdalla, M., and Richard, R. L. (1998). On the origin of the ion-electron temperature difference in the plasma sheet. J. Geophys. Res. Space Phys., 103(A7), 14879–14895. https://doi.org/10.1029/98JA00017

Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., and Akasofu, S. I. (1985). An ISEE 3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res. Space Phys., 90(A11), 10875–10895. https://doi.org/10.1029/JA090iA11p10875

Speiser, T. W. (1965). Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res., 70(17), 4219–4226. https://doi.org/10.1029/JZ070i017p04219

Tsyganenko, N. A. (1995). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res. Space Phys., 100(A4), 5599–5612. https://doi.org/10.1029/94JA03193

Tsyganenko, N. A., and Mukai, T. (2003). Tail plasma sheet models derived from Geotail particle data. J. Geophys. Res. Space Phys., 108(A3), 1136. https://doi.org/10.1029/2002JA009707

Wang, C. P., Lyons, L. R., Wolf, R. A., Nagai, T., Weygand, J. M., and Lui, A. T. Y. (2009). The plasma sheet pV5/3 and nv and associated plasma and energy transport for different convection strengths and AE levels. J. Geophys. Res. Space Phys., 114(A9), A00D02. https://doi.org/10.1029/2008JA013849

Wang, C. P., Gkioulidou, M., Lyons, L. R., and Angelopoulos, V. (2012). Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. J. Geophys. Res. Space Phys., 117(A8), A08215. https://doi.org/10.1029/2012JA017658

Wing, S., Johnson, J. R., Chaston, C. C., Echim, M., Escoubet, C. P., Lavraud, B., Lemon, C., Nykyri, K., Otto, A., … Wang, C. P. (2014). Review of solar wind entry into and transport within the plasma sheet. Space Sci. Rev., 184(1-4), 33–86. https://doi.org/10.1007/s11214-014-0108-9

Zesta, E., Donovan, E., Lyons, L., Enno, G., Murphree, J. S., and Cogger, L. (2002). Two-dimensional structure of auroral poleward boundary intensifications. J. Geophys. Res. Space Phys., 107(A11), SIA 6-1–SIA 6-20. https://doi.org/10.1029/2001JA000260

[1]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[2]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[3]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[4]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[5]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[6]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[7]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[8]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[9]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[10]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics. doi: 10.26464/epp2020008

[11]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[12]

FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022

[13]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[14]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[15]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[16]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[17]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[18]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail

ChuXin Chen, Chih-Ping Wang