Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Hemami, B., Masouleh, S. F., and Ghassemi, A. (2021). 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal. Earth Planet. Phys., 5(6), 559–580. http://doi.org/10.26464/epp2021054

2021, 5(6): 559-580. doi: 10.26464/epp2021054

SOLID EARTH: TECTONOPHYSICS

3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal

Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma, Norman, OK, USA

Corresponding author: Ahmad Ghassemi, ahmad.ghassemi@ou.edu

Received Date: 2021-12-27
Web Publishing Date: 2021-10-26

From 2009 to 2017, parts of Central America experienced marked increase in the number of small to moderate-sized earthquakes. For example, three significant earthquakes (~Mw 5) occurred near Prague, Oklahoma, in the U. S. in 2011. On 6 Nov 2011, an Mw 5.7 earthquake occurred in Prague, central Oklahoma with a sequence of aftershocks. The seismic activity has been attributed to slip on the Wilzetta fault system. This study provides a 3D fully coupled poroelastic analysis (using FLAC3D) of the Wilzetta fault system and its response to saltwater injection in the underpressured subsurface layers, especially the Arbuckle group and the basement, to evaluate the conditions that might have led to the increased seismicity. Given the data-limited nature of the problem, we have considered multiple plausible scenarios, and use the available data to evaluate the hydromechanical response of the faults of interest in the study area. Numerical simulations show that the injection of large volumes of fluid into the Arbuckle group tends to bring the part of the Wilzetta faults in Arbuckle group and basement into near-critical conditions.

Key words: poroelasticity; Oklahoma seismicity; Arbuckle group; saltwater injection; Wilzetta fault; 2011 Prague earthquake sequence

Alt II, R. C. , and Zoback, M. D. (2014). Development of a detailed stress map of Oklahoma for avoidance of potentially active faults when siting wastewater injection wells. In Proceedings of Fall Meeting 2014. San Francisco: AGU.222

Alt II, R. C., and Zoback, M. D. (2017). In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Am., 107(1), 216–228. https://doi.org/10.1785/0120160156

Antonellini, M., and Aydin, A. (1994). Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bulletin, 78(3), 355–377.

Bear, J. (2013). Dynamics of Fluids in Porous Media. Courier Corporation.222

Biot, M. A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys., 12(2), 155–164. https://doi.org/10.1063/1.1712886

Byerlee, J. (1978). Friction of rocks. In J. D. Byerlee, et al. (Eds. ), Rock Friction and Earthquake Prediction (pp. 615-626). Birkhäuser, Basel: Springer.222

Caine, J. S., Evans, J. P., and Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

Cappa, F. (2009). Modeling fluid transfer and slip in a fault zone when integrating heterogeneous hydromechanical characteristics in its internal structure. Geophys. J. Int., 178(3), 1357–1362. https://doi.org/10.1111/j.1365-246X.2009.04291.x

Carrell, J. R. (2014). Field-scale hydrogeologic modeling of water injection into the Arbuckle zone of the midcontinent [Doctoral dissertation]. Oklahoma: University of Oklahoma.222

Cheng, A. H. D. (2016). Poroelasticity (pp. 1-877). Cham, Switzerland: Springer.222

Chester, F. M., and Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure Appl. Geophys., 124(1-2), 79–106. https://doi.org/10.1007/BF00875720

Chester, F. M., Evans, J. P., and Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res. :Solid Earth, 98(B1), 771–786. https://doi.org/10.1029/92JB01866

Dart, R. L. (1990). In Situ Stress Analysis of Wellbore Breakouts from Oklahoma and the Texas Panhandle (pp. 1−36). Washington: USGS.222

Deng, K., Liu, Y. J., and Chen, X. W. (2020). Correlation between poroelastic stress perturbation and multidisposal wells induced earthquake sequence in Cushing, Oklahoma. Geophys. Res. Lett., 47(20), e2020GL089366. https://doi.org/10.1029/2020GL089366

Dycus, M. N. (2013). Structural characterization of the wilzetta fault zone: lincoln, Pottawatomie, and Creek Counties, Oklahoma [Doctoral dissertation]. Tulsa: University of Tulsa.222

Frohlich, C., Hayward, C., Stump, B., and Potter, E. (2011). The dallas-fort worth earthquake sequence: October 2008 through May 2009. Bull. Seismol. Soc. Am., 101(1), 327–340. https://doi.org/10.1785/0120100131

Frohlich, C., Ellsworth, W., Brown, W. A., Brunt, M., Luetgert, J., MacDonald, T., and Walter, S. (2014). The 17 May 2012 M4.8 earthquake near Timpson, East Texas: an event possibly triggered by fluid injection. J. Geophys. Res.: Solid Earth, 119(1), 581–593. https://doi.org/10.1002/2013JB010755

Gan, Q., and Elsworth, D. (2014). Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs. J. Geophys. Res. :Solid Earth, 119(4), 3340–3353. https://doi.org/10.1002/2013JB010679

Gao, Q., and Ghassemi, A. (2020). Finite element simulations of 3D planar hydraulic fracture propagation using a coupled hydro-mechanical interface element. Int. J. Numer. Anal. Meth. Geomech., 44(15), 1999–2024. https://doi.org/10.1002/nag.3116

Ghassemi, A., and Tao, Q. F. (2016). Thermo-poroelastic effects on reservoir seismicity and permeability change. Geothermics, 63, 210–224. https://doi.org/10.1016/j.geothermics.2016.02.006

Hair, T. J. (2012). Constructing a geomechanical model of the Woodford Shale, Cherokee Platform, Oklahoma, USA effects of confining stress and rock strength on fluid flow [Doctoral dissertation]. Texas: Texas Christian University.222

Healy, J. H., Rubey, W. W., Griggs, D. T., and Raleigh, C. B. (1968). The Denver earthquakes. Science, 161(3848), 1301–1310. https://doi.org/10.1126/science.161.3848.1301

Holland, A. A. , Keller Jr, G. R. , Darold, A. P. , Murray, K. E. , and Holloway, S. D. (2014). Multidisciplinary approach to identify and mitigate the hazard from induced seismicity in Oklahoma. In Proceedings of Fall Meeting 2014 (pp. U34A-04). Washington: American Geophysical Union.222

Hooker, V. E. , and Johnson, C. F. (1969). Near-surface Horizontal Stresses Including the Effects of Rock Anisotropy (Vol. 7224). Pittsburgh: US Bureau of Mines.222

Horton, S. (2012). Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismol. Res. Lett., 83(2), 250–260. https://doi.org/10.1785/gssrl.83.2.250

Hough, S. E. (2014). Shaking from injection-induced earthquakes in the central and eastern United States. Bull. Seismol. Soc. Am., 104(5), 2619–2626. https://doi.org/10.1785/0120140099

Hsieh, P. A., and Bredehoeft, J. D. (1981). A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J. Geophys. Res. :Solid Earth, 86(B2), 903–920. https://doi.org/10.1029/JB086iB02p00903

Itasca Consulting Group Inc. (2012). Fast Lagrangian Analysis of Continua in 3 Dimensions User’s MANUAL. Minneapolis, MN, USA: Itasca Consulting Group Inc.222

Keller, G. R. , and Holland, A. (2013). Oklahoma Geological Survey evaluation of the Prague earthquake sequence of 2011. Norman, OK: Oklahoma Geological Survey.222

Keranen, K. M., Savage, H. M., Abers, G. A., and Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41(6), 699–702. https://doi.org/10.1130/G34045.1

Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., and Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451. https://doi.org/10.1126/science.1255802

Kim, W. Y. (2013). Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. J. Geophys. Res. :Solid Earth, 118(7), 3506–3518. https://doi.org/10.1002/jgrb.50247

Kolawole, F., Johnston, C. S., Morgan, C. B., Chang, J. C., Marfurt, K. J., Lockner, D. A., Reches, Z., and Carpenter, B. M. (2019). The susceptibility of Oklahoma’s basement to seismic reactivation. Nat. Geosci., 12(10), 839–844. https://doi.org/10.1038/s41561-019-0440-5

Kolawole, F., Turko, M. S., and Carpenter, B. M. (2020). Basement-controlled deformation of sedimentary sequences, Anadarko Shelf, Oklahoma. Basin Res., 32(6), 1365–1387. https://doi.org/10.1111/bre.12433

Lorenz, J. C., Teufel, L. W., and Warpinski, N. R. (1991). Regional fractures I: A mechanism for the formation of regional fractures at depth in flat-lying reservoirs. AAPG Bull., 75(11), 1714–1737.

McGarr, A., Simpson, D., and Seeber, L. (2002). Case histories of induced and triggered seismicity. Int. Geophys., 81, 647–661. https://doi.org/10.1016/S0074-6142(02)80243-1

Murray, K. E., and Holland, A. A. (2014). Inventory of class II underground injection control volumes in the midcontinent. Shale Shaker, 65(2), 98–106.

National Research Council. (2013). Induced Seismicity Potential in Energy Technologies. Washington: National Academies Press.222

Nelson, P. H., Gianoutsos, N. J., and Drake, R. M. (2015). Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States. AAPG Bulletin, 99(10), 1861–1892. https://doi.org/10.1306/04171514169

Oklahoma Geological Survey (OGS). http://www.ou.edu/ogs/data/ fault222

Oklahoma Corporation Commission (OCC). http://www.occeweb.com/og/ogdatafiles2.htm222

OGS. http://www.ou.edu/ogs/research/earthquakes/catalogs222

Pearson, C. (1981). The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J. Geophys. Res. :Solid Earth, 86(B9), 7855–7864. https://doi.org/10.1029/JB086iB09p07855

Petersen, M. D., Mueller, C. S., Moschetti, M. P., Hoover, S. M., Shumway, A. M., McNamara, D. E., Williams, R. A., Llenos A. L., Ellsworth, W. L., … Rukstales, K. S. (2017). One-year seismic-hazard forecast for the central and eastern united states from induced and natural earthquakes. Seismological Research Letters, 88(3), 772–783. https://doi.org/10.1785/0220170005

Phillips, W. S., House, L. S., and Fehler, M. C. (1997). Detailed joint structure in a geothermal reservoir from studies of induced microearthquake clusters. J. Geophys. Res. :Solid Earth, 102(B6), 11745–11763. https://doi.org/10.1029/97JB00762

Raleigh, C. B., Healy, J. H., and Bredehoeft, J. D. (1976). An experiment in earthquake control at Rangely, Colorado. Science, 191(4233), 1230–1237. https://doi.org/10.1126/science.191.4233.1230

Rice, J. R., and Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys., 14(2), 227–241. https://doi.org/10.1029/RG014i002p00227

Rinaldi, A. P., Jeanne, P., Rutqvist, J., Cappa, F., and Guglielmi, Y. (2014). Effects of fault-zone architecture on earthquake magnitude and gas leakage related to CO2 injection in a multi-layered sedimentary system. Green. Gases:Sci. Technol., 4(1), 99–120. https://doi.org/10.1002/ghg.1403

Rutqvist, J., Wu, Y. S., Tsang, C. F., and Bodvarsson, G. (2002). A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, 39(4), 429–442. https://doi.org/10.1016/S1365-1609(02)00022-9

Segall, P. (1989). Earthquakes triggered by fluid extraction. Geology, 17(10), 942–946. https://doi.org/10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2

Statler, A. T. (1965). Stratigraphy of the Simpson group in Oklahoma. Tulsa Geol. Soc. Dig., 33, 162–209.

Suckale, J. (2009). Induced seismicity in hydrocarbon fields. Adv. Geophys., 51, 55–106. https://doi.org/10.1016/S0065-2687(09)05107-3

Sumy, D. F., Cochran, E. S., Keranen, K. M., Wei, M. Y., and Abers, G. A. (2014). Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. :Solid Earth, 119(3), 1904–1923. https://doi.org/10.1002/2013JB010612

Sun, X. D., and Hartzell, S. (2014). Finite-fault slip model of the 2011 Mw5.6 Prague, Oklahoma earthquake from regional waveforms. Geophys. Res. Lett., 41(12), 4207–4213. https://doi.org/10.1002/2014GL060410

von Schonfeldt, H. A., Kehle, R. O., and Gray. K. E. (1973). Mapping of stress field in the upper Earth's crust of the US. Final technical report. grant 14-08-0001-1222, US Geological Survey, Reston, Va.222

Walters, R. F. (1958). Differential entrapment of oil and gas in Arbuckle dolomite of central Kansas. AAPG Bull., 42(9), 2133–2173.

Way, H. S. K. (1983). Structural Study of the Hunton Lime of the Wilzetta Field T12-13N, R5E, Lincoln County, Oklahoma, Pertaining to the Exploration for Hydrocarbons [Doctoral dissertation]. Oklahoma State University.222

Yu, W. Q. (2017). Laboratory geomechanical characterization of the Arbuckle group and crystalline basement rocks in Oklahoma [Doctoral dissertation]. Oklahoma: University of Oklahoma.222

Yu, W. Q. , and Ghassemi, A. (2017). Laboratory geomechanical characterization of the Arbuckle Group in Oklahoma. In Proceedings of the 51st U. S. Rock Mechanics/Geomechanics Symposium. San Francisco: American Rock Mechanics Association.222

[1]

Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034

[2]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[3]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[4]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[5]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[6]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[7]

SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056

[8]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055

[9]

XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning-Xichang segment of the Anninghe fault zone, SW China, Earth and Planetary Physics. doi: 10.26464/epp2022010

[10]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[11]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[12]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[13]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[14]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[15]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[16]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[17]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[18]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[19]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[20]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal

Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi