Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Balachandran, R., Chen, L.-J., Wang, S. and Fok, M.-C. (2021). Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms. Earth Planet. Phys., 5(2), 180–186doi: 10.26464/epp2021015

2021, 5(2): 180-186. doi: 10.26464/epp2021015

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms

1. 

Cornell University, Ithaca, NY 14853, USA

2. 

NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA

3. 

Department of Astronomy, University of Maryland, College Park, MD 20742, USA

Corresponding author: Li-Jen Chen, lijen@mailaps.org

Received Date: 2020-08-04
Web Publishing Date: 2021-03-01

We investigate the correlation between Disturbance Storm Time (Dst) characteristics and solar wind conditions for the main phase of geomagnetic storms, seeking possible factors that distinguish extreme storms (minimum Dst <−250 nT) and major storms (minimum Dst <−100 nT). In our analysis of 170 storms, there is a marked correlation between the average rate of change of Dst during a storm’s main phase (ΔDstt) and the storm’s minimum Dst, indicating a faster ΔDstt as storm intensity increases. Extreme events add a new regime to ΔDstt, the hourly time derivative of Dst (dDst/dt), and sustained periods of large amplitudes for southward interplanetary magnetic field Bz and solar wind convection electric field Ey. We find that Ey is a less efficient driver of dDst/dt for extreme storms compared to major storms, even after incorporating the effects of solar wind pressure and ring current decay. When minimum Dst is correlated with minimum Bz, we observe a similar divergence, with extreme storms tending to have more negative Dst than the trend predicted on the basis of major storms. Our results enable further improvements in existing models for storm predictions, including extreme events, based on interplanetary measurements.

Key words: extreme geomagnetic storm; Dst prediction; solar wind driving; major storms

Alex, S., Mukherjee, S., and Lakhina, G. S. (2006). Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003. J. Atmos. Sol. Terr. Phys., 68(7), 769–780. https://doi.org/10.1016/j.jastp.2006.01.003

Borovsky, J. E., and Birn, J. (2014). The solar wind electric field does not control the dayside reconnection rate. J. Geophys. Res. Space Phys., 119(2), 751–760. https://doi.org/10.1002/2013JA019193

Burton, R. K., McPherron, R. L., and Russell, C. T. (1975). An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80(31), 4204–4214. https://doi.org/10.1029/JA080i031p04204

Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Rev. Geophys., 37(4), 407–438. https://doi.org/10.1029/1999RG900009

Dorelli, J. C. (2019). Does the solar wind electric field control the reconnection rate at Earth's subsolar magnetopause?. J. Geophys. Res. Space Phys., 124(4), 2668–2681. https://doi.org/10.1029/2018JA025868

Gonzalez, W. D., and Tsurutani, B. T. (1987). Criteria of interplanetary parameters causing intense magnetic storms (D st < -100 nT). Planet. Space Sci., 35(9), 1101–1109. https://doi.org/10.1016/0032-0633(87)90015-8

Gonzalez, W. D., and Echer, E. (2005). A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms. Geophys. Res. Lett., 32(18), L18103. https://doi.org/10.1029/2005GL023486

Iyemori, T. (1990). Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomag. Geoelec., 42(11), 1249–1265. https://doi.org/10.5636/jgg.42.1249

Ji, E. Y., Moon, Y. J., Gopalswamy, N., and Lee, D. H. (2012). Comparison of Dst forecast models for intense geomagnetic storms. J. Geophys. Res. Space Phys., 117(A3), A03209. https://doi.org/10.1029/2011JA016872

Kamide, Y., Yokoyama N., Gonzalez W., Tsurutani B. T., Daglis I. A., Brekke A., and Masuda S. (1998). Two-step development of geomagnetic storms. J. Geophys. Res. Space Phys., 103(A4), 6917–6921. https://doi.org/10.1029/97JA03337

Kokubun, S. (1972). Relationship of interplanetary magnetic field structure with development of substorm and storm main phase. Planet. Space Sci., 20(7), 1033–1049. https://doi.org/10.1016/0032-0633(72)90214-0

Lakhina, G. S., and Tsurutani, B. T. (2017). Supergeomagnetic storms: past, present, and future. In N. Buzulukova (Ed.), Extreme Events in Geospace (pp. 157-185). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-812700-1.00007-8222

Li, Q., Gao, Y. F., Zhu, P. Y., Chen, H. R., and Zhang, X. L. (2011). Statistical study on great geomagnetic storms during solar cycle 23. Earthq. Sci., 24(4), 365–372. https://doi.org/10.1007/s11589-011-0799-x

O’Brien, T. P., and McPherron, R. L. (2000). An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay. J. Geophys. Res. Space Phys., 105(A4), 7707–7719. https://doi.org/10.1029/1998JA000437

Oliveira, D. M., Zesta, E., Hayakawa, H., and Bhaskar, A. (2020). Estimating satellite orbital drag during historical magnetic superstorms. Space Wea., 18(11), e2020SW002472. https://doi.org/10.1029/2020SW002472

Rawat, R., Alex S., and Lakhina, G. S. (2007). Geomagnetic storm characteristics under varied interplanetary conditions. Bull. Astr. Soc. India, 35, 499–509.

Rawat, R., Alex S., and Lakhina, G. S. (2010). Storm-time characteristics of intense geomagnetic storms (Dst ≤ -200 nT) at low-latitudes and associatedenergetics. J. Atmos. Sol. Terr. Phys., 72(18), 1364–1371. https://doi.org/10.1016/j.jastp.2010.09.029

Rostoker, G., Friedrich E., and Dobbs, M. (1997). Physics of magnetic storms. In B. T. Tsurutani, et al., (Eds.), Magnetic Storms. (pp. 149-160). Washington: American Geophysical Union. https://doi.org/10.1029/GM098p0149222

Sitnov, M. I., Tsyganenko, N. A., Ukhorskiy, A. Y., and Brandt, P. C. (2008). Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. J. Geophys. Res. Space Phys., 113(A7), A07218. https://doi.org/10.1029/2007JA013003

Stephens, G. K., Sitnov, M. I., Korth, H., Tsyganenko, N. A., Ohtani, S., Gkioulidou, M., and Ukhorskiy, A. Y. (2019). Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124(2), 1085–1110. https://doi.org/10.1029/2018JA025843

Temerin, M., and Li, X. (2006). Dst model for 1995–2002. J. Geophys. Res., 111(A04221). https://doi.org/10.1029/2005JA011257

Vichare, G., Alex, S., and Lakhina G. S. (2005). Some characteristics of intense geomagnetic storms and their energy budget. J. Geophys. Res. Space Phys., 110(A3), A03204. https://doi.org/10.1029/2004JA010418

Wang, C. B., Chao, J. K., and Lin, C. H. (2003). Influence of the solar wind dynamic pressure on the decay and injection of the ring current. J. Geophys. Res. Space Phys., 108(A9), 1341. https://doi.org/10.1029/2003JA009851

Wanliss, J. A., and Showalter, K. M. (2006). High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys., 111(A2), A02202. https://doi.org/10.1029/2005JA011034

Yokoyama, N., and Kamide, Y. (1997). Statistical nature of geomagnetic storms. J. Geophys. Res. Space Phys., 102(A7), 14215–14222. https://doi.org/10.1029/97JA00903

[1]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[2]

Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032

[3]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[4]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062

[5]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[6]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[7]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[8]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics. doi: 10.26464/epp2021024

[9]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics. doi: 10.26464/epp2021029

[10]

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046

[11]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[12]

Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics, 4, 493-503. doi: 10.26464/epp2020044

[13]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[14]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[15]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[16]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[17]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[18]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[19]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[20]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms

Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok