Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Lu, G., Zhao, L., Chen, L., Wan, B. and Wu, F. Y. (2021). Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?. Earth Planet. Phys., 5(2), 123–140doi: 10.26464/epp2021014

2021, 5(2): 123-140. doi: 10.26464/epp2021014

SOLID EARTH: GEODYNAMICS

Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Gang Lu, lvgang@mail.iggcas.ac.cn

Received Date: 2020-10-18
Web Publishing Date: 2021-03-01

The theory of plate tectonics came together in the 1960s, achieving wide acceptance after 1968. Since then it has been the most successful framework for investigations of Earth’s evolution. Subduction of the oceanic lithosphere, as the engine that drives plate tectonics, has played a key role in the theory. However, one of the biggest unanswered questions in Earth science is how the first subduction was initiated, and hence how plate tectonics began. The main challenge is how the strong lithosphere could break and bend if plate tectonics-related weakness and slab-pull force were both absent. In this work we review state-of-the-art subduction initiation (SI) models with a focus on their prerequisites and related driving mechanisms. We note that the plume-lithosphere-interaction and mantle-convection models do not rely on the operation of existing plate tectonics and thus may be capable of explaining the first SI. Re-investigation of plate-driving mechanisms reveals that mantle drag may be the missing driving force for surface plates, capable of triggering initiation of the first subduction. We propose a composite driving mechanism, suggesting that plate tectonics may be driven by both subducting slabs and convection currents in the mantle. We also discuss and try to answer the following question: Why has plate tectonics been observed only on Earth?

Key words: subduction initiation; plate tectonics; mantle convection; driving force; mantle drag

Agard, P., Jolivet, L., Vrielynck, B., Burov, E., and Monié, P. (2007). Plate acceleration: The obduction trigger?. Earth Planet. Sci. Lett., 258(3-4), 428–441. https://doi.org/10.1016/j.jpgl.2007.04.002

Anderson, D. L. (2001). Geophysics. Top-down tectonics?. Science, 293(5537), 2016–2018. https://doi.org/10.1126/science.1065448

Anderson, D. L. (2002). Plate tectonics as a far-from-equilibrium self-organized system. In S. Stein, et al. (Eds.), Plate Boundary Zones (pp. 411-425). Washington: American Geophysical Union. https://doi.org/10.1029/GD030p0411222

Armann, M., and Tackley, P. J. (2012). Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: Two-dimensional models. J. Geophys. Res.: Planets, 117(E12), E12003. https://doi.org/10.1029/2012JE004231

Baes, M., Govers, R., and Wortel, R. (2011). Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from numerical models. Geophys. J. Int., 184(3), 991–1008. https://doi.org/10.1111/j.1365-246X.2010.04896.x

Baes, M., and Sobolev, S. V. (2017). Mantle flow as a trigger for subduction initiation: a missing element of the wilson cycle concept. Geochem., Geophys., Geosyst., 18(12), 4469–4486. https://doi.org/10.1002/2017GC006962

Baes, M., Sobolev, S. V., and Quinteros, J. (2018). Subduction initiation in mid-ocean induced by mantle suction flow. Geophys. J. Int., 215(3), 1515–1522. https://doi.org/10.1093/gji/ggy335

Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M., and Hirose, K. (2017). Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci., 10(3), 236–240. https://doi.org/10.1038/ngeo2898

Becker, T. W., and Faccenna, C. (2011). Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett., 310(3-4), 453–461. https://doi.org/10.1016/j.jpgl.2011.08.021

Bercovici, D. (2003). The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205(3-4), 107–121. https://doi.org/10.1016/S0012-821X(02)01009-9

Bercovici, D., and Ricard, Y. (2005). Tectonic plate generation and two-phase damage: Void growth versus grain size reduction. J. Geophys. Res.: Solid Earth, 110(B3), B03401. https://doi.org/10.1029/2004JB003181

Bercovici, D., and Ricard, Y. (2013). Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow. Earth Planet. Sci. Lett., 365, 275–288. https://doi.org/10.1016/j.jpgl.2013.02.002

Bercovici, D., and Ricard, Y. (2014). Plate tectonics, damage and inheritance. Nature, 508(7497), 513–516. https://doi.org/10.1038/nature13072

Bercovici, D., Tackley, P. J., and Ricard, Y. (2015). The generation of plate tectonics from mantle dynamics. In G. Schubert (Ed.), Treatise on Geophysics (2nd ed, Vol. 7). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00135-4222

Billen, M. I. (2008). Modeling the dynamics of subducting slabs. Ann. Rev. Earth Planet. Sci., 36, 325–356. https://doi.org/10.1146/annurev.earth.36.031207.124129

Buffett, B. A. (2006). Plate force due to bending at subduction zones. J. Geophys. Res.: Solid Earth, 111(B9), B09405. https://doi.org/10.1029/2006JB004295

Buiter, S. J. H., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry, W., le Pourhiet, L., Mishin, Y., Egholm, D. L.,.. Beaumont, C. (2016). Benchmarking numerical models of brittle thrust wedges. J. Struct. Geol., 92, 140–177. https://doi.org/10.1016/j.jsg.2016.03.003

Burov, E., and Cloetingh, S. (2010). Plume-like upper mantle instabilities drive subduction initiation. Geophys. Res. Lett., 37(3), L03309. https://doi.org/10.1029/2009gl041535

Burov, E. B. (2011). Rheology and strength of the lithosphere. Mar. Petrol. Geol., 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008

Byerlee, J. (1978). Friction of rocks. Pure Appl. Geophys., 116(4-5), 615–626. https://doi.org/10.1007/BF00876528

Casey, J. F., and Dewey, J. F. (1984). Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres-implications for ophiolitic geology and obduction. Geological Society, London, Special Publication, 13, 269–290. https://doi.org/10.1144/GSL.SP.1984.013.01.22

Chapple, W. M., and Tullis, T. E. (1977). Evaluation of the forces that drive the plates. J. Geophys. Res., 82(14), 1967–1984. https://doi.org/10.1029/jb082i014p01967

Chen, L., Wang, X., Liang, X. F., Wan, B., and Liu, L. J. (2020). Subduction tectonics vs. Plume tectonics—Discussion on driving forces for plate motion. Sci. China Earth Sci., 63(3), 315–328. https://doi.org/10.1007/s11430-019-9538-2

Cloetingh, S., Wortel, R., Vlaar, N. J. (1989). On the initiation of subduction. J. Geophys. Res., 129, 7–25.

Cloetingh, S. A. P. L., Wortel, M. J. R., and Vlaar, N. J. (1982). Evolution of passive continental margins and initiation of subduction zones. Nature, 297(5862), 139–142. https://doi.org/10.1038/297139a0

Coltice, N., Rolf, T., Tackley, P. J., and Labrosse, S. (2012). Dynamic causes of the relation between area and age of the Ocean Floor. Science, 336(6079), 335–338. https://doi.org/10.1126/science.1219120

Coltice, N., Gérault, M., and Ulvrová, M. (2017). A mantle convection perspective on global tectonics. Earth-Sci. Rev., 165, 120–150. https://doi.org/10.1016/j.earscirev.2016.11.006

Coltice, N., Husson, L., Faccenna, C., and Arnould, M. (2019). What drives tectonic plates?. Sci. Adv., 5(10), eaax4295. https://doi.org/10.1126/sciadv.aax4295

Conrad, C. P., and Lithgow-Bertelloni, C. (2002). How mantle slabs drive plate tectonics. Science, 298(5591), 207–209. https://doi.org/10.1126/science.1074161

Conrad, C. P., and Lithgow-Bertelloni, C. (2004). The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J. Geophys. Res.: Solid Earth, 109(B10), B10407. https://doi.org/10.1029/2004JB002991

Cooper, P. A., and Taylor, B. (1985). Polarity reversal in the Solomon Islands arc. Nature, 314(6010), 428–430. https://doi.org/10.1038/314428a0

Crameri, F., and Kaus, B. J. P. (2010). Parameters that control lithospheric-scale thermal localization on terrestrial planets. Geophys. Res. Lett., 37(9), L09308. https://doi.org/10.1029/2010GL042921

Crameri, F., Tackley, P. J., Meilick, I., Gerya, T. V., and Kaus, B. J. P. (2012). A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., 39(3), L03306. https://doi.org/10.1029/2011GL050046

Crameri, F., and Tackley, P. J. (2014). Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface. J. Geophys. Res.: Solid Earth, 119(7), 5921–5942. https://doi.org/10.1002/2014JB010939

Crameri, F., and Tackley, P. J. (2015). Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection. J. Geophys. Res.: Solid Earth, 120(5), 3680–3706. https://doi.org/10.1002/2014JB011664

Crameri, F., and Tackley, P. J. (2016). Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Prog. Earth Planet. Sci., 3(1), 30. https://doi.org/10.1186/s40645-016-0103-8

Crameri, F., Conrad, C. P., Montési, L., and Lithgow-Bertelloni, C. R. (2019). The dynamic life of an oceanic plate. Tectonophysics, 760, 107–135. https://doi.org/10.1016/j.tecto.2018.03.016

Crameri, F., Magni, V., Domeier, M., Shephard, G. E., Chotalia, K., Cooper, G., Eakin, C. M., Grima, A. G., Gürer, D.,.. Thielmann, M. (2020). A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun., 11(1), 3750. https://doi.org/10.1038/s41467-020-17522-9

Dal Zilio, L., Faccenda, M., and Capitanio, F. (2018). The role of deep subduction in supercontinent breakup. Tectonophysics, 746, 312–324. https://doi.org/10.1016/j.tecto.2017.03.006

Dal Zilio, L., Kissling, E., Gerya, T., and van Dinther, Y. (2020). Slab rollback orogeny model: a test of concept. Geophys. Res. Lett., 47(18), e2020GL089917. https://doi.org/10.1029/2020GL089917

Davaille, A., Smrekar, S. E., and Tomlinson, S. (2017). Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci., 10(5), 349–355. https://doi.org/10.1038/ngeo2928

Davies, G. F. (1989). Mantle convection model with a dynamic plate: topography, heat flow and gravity anomalies. Geophys. J. Int., 98(3), 461–464. https://doi.org/10.1111/j.1365-246X.1989.tb02283.x

Davies, G. F. (2009). Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet. Sci. Lett., 287(3-4), 513–518. https://doi.org/10.1016/j.jpgl.2009.08.038

Doin, M. P., and Henry, P. (2001). Subduction initiation and continental crust recycling: the roles of rheology and eclogitization. Tectonophysics, 342(1-2), 163–191. https://doi.org/10.1016/S0040-1951(01)00161-5

Duretz, T., Agard, P., Yamato, P., Ducassou, C., Burov, E. B., and Gerya, T. V. (2016). Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case. Gondw. Res., 32, 1–10. https://doi.org/10.1016/j.gr.2015.02.002

Dymkova, D., and Gerya, T. (2013). Porous fluid flow enables oceanic subduction initiation on Earth. Geophys. Res. Lett., 40(21), 5671–5676. https://doi.org/10.1002/2013GL057798

Erickson, S. G. (1993). Sedimentary loading, lithospheric flexure, and subduction initiation at passive margins. Geology, 21(2), 125–128. https://doi.org/10.1130/0091-7613(1993)021<0125:SLLFAS>2.3.CO;2

Erickson, S. G., and Arkani-Hamed, J. (1993). Subduction initiation at passive margins: the Scotian Basin, Eastern Canada as a potential example. Tectonics, 12(3), 678–687. https://doi.org/10.1029/92TC02602

Evans, B., and Goetze, C. (1979). The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J. Geophys. Res.: Solid Earth, 84(B10), 5505–5524. https://doi.org/10.1029/JB084iB10p05505

Faccenda, M., Gerya, T. V., and Chakraborty, S. (2008). Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos, 103(1-2), 257–287. https://doi.org/10.1016/j.lithos.2007.09.009

Faccenna, C., Becker, T. W., Lallemand, S., and Steinberger, B. (2012). On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophys. Res. Lett., 39(3), L03305. https://doi.org/10.1029/2011GL050155

Faccenna, C., Becker, T. W., Conrad, C. P., and Husson, L. (2013). Mountain building and mantle dynamics. Tectonics, 32(1), 80–93. https://doi.org/10.1029/2012TC003176

Forsyth, D. W., and Uyeda, S. (1975). On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43(1), 163–200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x

Fowler, A. C., and O'Brien, S. B. G. (1996). A mechanism for episodic subduction on Venus. J. Geophys. Res.: Planets, 101(E2), 4755–4763. https://doi.org/10.1029/95JE03261

Fyfe, W. S., and Leonardos, Jr. O. H. (1977). Speculations on the causes of crustal rifting and subduction, with applications to the atlantic margin of Brazil. Tectonophysics, 42(1), 29–36. https://doi.org/10.1016/0040-1951(77)90015-4

Gerbault, M. (2000). At what stress level is the central Indian Ocean lithosphere buckling?. Earth Planet. Sci. Lett., 178(1-2), 165–181. https://doi.org/10.1016/S0012-821X(00)00054-6

Gerya, T. (2011). Future directions in subduction modeling. J. Geodyn., 52(5), 344–378. https://doi.org/10.1016/j.jog.2011.06.005

Gerya, T. V., Connolly, J. A. D., and Yuen, D. A. (2008). Why is terrestrial subduction one-sided?. Geology, 36(1), 43–46. https://doi.org/10.1130/G24060A.1

Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., and Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221–225. https://doi.org/10.1038/nature15752

Ghosh, A., Holt, W. E., Flesch, L. M., and Haines, A. J. (2006). Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34(5), 321–324. https://doi.org/10.1130/G22071.1

Ghosh, A., and Holt, W. E. (2012). Plate motions and stresses from global dynamic models. Science, 335(6070), 839–843. https://doi.org/10.1126/science.1214209

Goetze, C., and Evans, B. (1979). Stress and temperature in bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astr. Soc., 59(3), 463–478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x

Goren, L., Aharonov, E., Mulugeta, G., Koyi, H. A., and Mart, Y. (2008). Ductile deformation of passive margins: A new mechanism for subduction initiation. J. Geophys. Res.: Solid Earth, 113(B8), B08411. https://doi.org/10.1029/2005JB004179

Govers, R., and Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1-2), 505–523. https://doi.org/10.1016/j.jpgl.2005.03.022

Guillot, S., Schwartz, S., Reynard, B., Agard, P., and Prigent, C. (2015). Tectonic significance of serpentinites. Tectonophysics, 646, 1–19. https://doi.org/10.1016/j.tecto.2015.01.020

Guilmette, C., Smit, M. A., van Hinsbergen, D. J. J., Gürer, D., Corfu, F., Charette, B., Maffione, M., Rabeau, O., and Savard, D. (2018). Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci., 11(9), 688–695. https://doi.org/10.1038/s41561-018-0209-2

Gurnis, M., Hall, C., and Lavier, L. (2004). Evolving force balance during incipient subduction. Geochem., Geophys., Geosyst., 5(7), Q07001. https://doi.org/10.1029/2003GC000681

Hager, B. H., and O’Connell, R. J. (1981). A simple global model of plate dynamics and mantle convection. J. Geophys. Res.: Solid Earth, 86(B6), 4843–4867. https://doi.org/10.1029/JB086iB06p04843

Hales, A. L. (1936). Convection currents in the Earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 3(9), 372–379. https://doi.org/10.1111/j.1365-246X.1936.tb01744.x

Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., and Müller, R. D. (2003). Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet. Sci. Lett., 212(1-2), 15–30. https://doi.org/10.1016/S0012-821X(03)00242-5

Hansen, V. L. (2007). Subduction origin on early Earth: A hypothesis. Geology, 35(12), 1059–1062. https://doi.org/10.1130/G24202A.1

Hirth, G., and Kohlstedt, D. L. (2004). Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In J. Eiler (Ed.), Inside the Subduction Factory (Vol. 138, pp. 83-105). Washington: American Geophysical Union. https://doi.org/10.1029/138GM06222

Holmes, A. (1931). Radioactivity and earth movements. Trans. Geol. Soc. Glasgow, 18(3), 559–606. https://doi.org/10.1144/transglas.18.3.559

Hunter, J., and Watts, A. B. (2016). Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophys. J. Int., 207(1), 288–316. https://doi.org/10.1093/gji/ggw275

Johnson, T. E., Brown, M., Kaus, B. J. P., and VanTongeren, J. A. (2014). Delamination and recycling of archaean crust caused by gravitational instabilities. Nat. Geosci., 7(1), 47–52. https://doi.org/10.1038/ngeo2019

Karato, S. I., and Barbot, S. (2018). Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus. Sci. Rep., 8(1), 11884. https://doi.org/10.1038/s41598-018-30174-6

Karig, D. E. (1982). Initiation of subduction zones: implications for arc evolution and ophiolite development. Geol. Soc. Lond. Spec. Pub., 10(1), 563–576. https://doi.org/10.1144/GSL.SP.1982.010.01.37

Keenan, T. E., Encarnación, J., Buchwaldt, R., Fernandez, D., Mattinson, J., Rasoazanamparany, C., and Luetkemeyer, P. B. (2016). Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proc. Natl. Acad. Sci. USA, 113(47), E7359–E7366. https://doi.org/10.1073/pnas.1609999113

Kemp, D. V, and Stevenson, D. J. (1996). A tensile, flexural model for the initiation of subduction. Geophys. J. Int., 125(1), 73–93. https://doi.org/10.1111/j.1365-246X.1996.tb06535.x

Kreemer, C. (2009). Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. Journal of Geophysical Research: Solid Earth, 114(10), 1–18. https://doi.org/10.1029/2009JB006416

Korenaga, J. (2007). Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics?. J. Geophys. Res.: Solid Earth, 112(B5), B05408. https://doi.org/10.1029/2006JB004502

Korenaga, J. (2013). Initiation and evolution of plate tectonics on earth: theories and observations. Annu. Rev. Earth Planet. Sci., 41, 117–151. https://doi.org/10.1146/annurev-earth-050212-124208

Kreemer, C., Blewitt, G., and Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochem., Geophys., Geosyst., 15(10), 3849–3889. https://doi.org/10.1002/2014GC005407

Landuyt, W., and Bercovici, D. (2009). Formation and structure of lithospheric shear zones with damage. Phys. Earth Planet. Inter., 175(3-4), 115–126. https://doi.org/10.1016/j.pepi.2009.03.005

Leng, W., and Gurnis, M. (2015). Subduction initiation at relic arcs. Geophys. Res. Lett., 42(17), 7014–7021. https://doi.org/10.1002/2015GL064985

Li, Z. H., and Ribe, N. M. (2012). Dynamics of free subduction from 3-D boundary element modeling. J. Geophys. Res.: Solid Earth, 117(B6), B06408. https://doi.org/10.1029/2012JB009165

Lithgow-Bertelloni, C., and Silver, P. G. (1998). Dynamic topography, plate driving forces and the African superswell. Nature, 395(6699), 269–272. https://doi.org/10.1038/26212

Lourenço, D. L., Rozel, A., and Tackley, P. J. (2016). Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett., 439, 18–28. https://doi.org/10.1016/j.jpgl.2016.01.024

Lourenço, D. L., Rozel, A. B., Ballmer, M. D., and Tackley, P. J. (2020). Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on earth-like planets. Geochem., Geophys., Geosyst., 21(4), e2019GC008756. https://doi.org/10.1029/2019GC008756

Lu, G., Kaus, B. J. P., Zhao, L., and Zheng, T. Y. (2015). Self-consistent subduction initiation induced by mantle flow. Terra Nova, 27(2), 130–138. https://doi.org/10.1111/ter.12140

Maffione, M., Thieulot, C., van Hinsbergen, D. J. J., Morris, A., Plümper, O., and Spakman, W. (2015). Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites. Geochem., Geophys., Geosyst., 16(6), 1753–1770. https://doi.org/10.1002/2015GC005746

Maffione, M., van Hinsbergen, D. J. J., de Gelder, G. I. N. O., van der Goes, F. C., and Morris, A. (2017). Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria. J. Geophys. Res.: Solid Earth, 122(5), 3953–3976. https://doi.org/10.1002/2016JB013821

Mallard, C., Coltice, N., Seton, M., Müller, R. D., and Tackley, P. J. (2016). Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature, 535(7610), 140–143. https://doi.org/10.1038/nature17992

Marques, F. O., Nikolaeva, K., Assumpção, M., Gerya, T. V., Bezerra, F. H. R., do Nascimento, A. F., and Ferreira, J. M. (2013). Testing the influence of far-field topographic forcing on subduction initiation at a passive margin. Tectonophysics, 608, 517–524. https://doi.org/10.1016/j.tecto.2013.08.035

Marques, F. O., Cabral, F. R., Gerya, T. V., Zhu, G., and May, D. A. (2014). Subduction initiates at straight passive margins. Geology, 42(4), 331–334. https://doi.org/10.1130/G35246.1

Mart, Y., Aharonov, E., Mulugeta, G., Ryan, W., Tentler, T., and Goren, L. (2005). Analogue modelling of the initiation of subduction. Geophys. J. Int., 160(3), 1081–1091. https://doi.org/10.1111/j.1365-246X.2005.02544.x

Matsumoto, T., and Tomoda, Y. (1983). Numerical simulation of the initiation of subduction at the fracture zone. J. Phys. Earth, 31(3), 183–194. https://doi.org/10.4294/jpe1952.31.183

McKenzie, D. P. (1977). The initiation of trenches: a finite amplitude instability. In M. Talwani and W. C. Pitman Ⅲ (Eds.), Island Arcs, Deep Sea Trenches and Back-Arc basins (Vol. 1, pp. 57-61). Washington: AGU. https://doi.org/10.1029/ME001p0057222

Mitchell, A. H. G. (1984). Initiation of subduction by post-collision foreland thrusting and back-thrusting. J. Geodyn., 1(2), 103–120. https://doi.org/10.1016/0264-3707(84)90023-1

Molnar, P., England, P., and Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31(4), 357–396. https://doi.org/10.1029/93RG02030

Moresi, L., and Solomatov, V. (1998). Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int., 133(3), 669–682. https://doi.org/10.1046/j.1365-246X.1998.00521.x

Moresi, L. N., and Solomatov, V. S. (1995). Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids, 7(9), 2154–2162. https://doi.org/10.1063/1.868465

Mueller, S., and Phillips, R. J. (1991). On the initiation of subduction. J. Geophys. Res.: Solid Earth, 96(B1), 651–665. https://doi.org/10.1029/90JB02237

Nair, R., and Chacko, T. (2008). Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 36(7), 583–586. https://doi.org/10.1130/G24773A.1

Nakagawa, T., and Iwamori, H. (2017). Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle. J. Geophys. Res.: Solid Earth, 122(10), 8431–8445. https://doi.org/10.1002/2017JB014052

Nikolaeva, K., Gerya, T. V., and Connolly, J. A. D. (2008). Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys. Earth Planet. Inter., 171(1-4), 336–356. https://doi.org/10.1016/j.pepi.2008.06.026

Nikolaeva, K., Gerya, T. V., and Marques, F. O. (2010). Subduction initiation at passive margins: Numerical modeling. J. Geophys. Res.: Solid Earth, 115(B3), B03406. https://doi.org/10.1029/2009JB006549

Nikolaeva, K., Gerya, T. V., and Marques, F. O. (2011). Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology, 39(5), 463–466. https://doi.org/10.1130/G31972.1

Niu, Y. L., O’Hara, M. J., and Pearce, J. A. (2003). Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective. J. Petrol., 44(5), 851–866. https://doi.org/10.1093/petrology/44.5.851

Niu, Y. L. (2020). On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. J. Asian Earth Sci., 194, 104367. https://doi.org/10.1016/j.jseaes.2020.104367

O’Neill, C., Marchi, S., Bottke, W., and Fu, R. (2020). The role of impacts on Archaean tectonics. Geology, 48(2), 174–178. https://doi.org/10.1130/G46533.1

Puster, P., Hager, B. H., and Jordan, T. H. (1995). Mantle convection experiments with evolving plates. Geophys. Res. Lett., 22(16), 2223–2226. https://doi.org/10.1029/95GL01998

Pysklywec, R. N. (2001). Evolution of subducting mantle lithosphere at a continental plate boundary. Geophys. Res. Lett., 28(23), 4399–4402. https://doi.org/10.1029/2001GL013567

Ranalli, G. (1995). Rheology of the Earth (2nd ed.). London: Chapman & Hall.222

Ranero, C. R., Morgan, J. P., McIntosh, K., and Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956), 367–373. https://doi.org/10.1038/nature01961

Reese, C. C., Solomatov, V. S., and Moresi, L. N. (1999). Non-newtonian stagnant lid convection and magmatic resur facing on venus. Icarus, 139(1), 67–80. https://doi.org/10.1006/icar.1999.6088

Regenauer-Lieb, K., Yuen, D. A., and Branlund, J. (2001). The initiation of subduction: criticality by addition of water?. Science, 294(5542), 578–580. https://doi.org/10.1126/science.1063891

Rey, P. F., Coltice, N., and Flament, N. (2014). Spreading continents kick-started plate tectonics. Nature, 513(7518), 405–408. https://doi.org/10.1038/nature13728

Ribe, N. M. (2010). Bending mechanics and mode selection in free subduction: a thin-sheet analysis. Geophys. J. Int., 180(2), 559–576. https://doi.org/10.1111/j.1365-246X.2009.04460.x

Rolf, T., and Tackley, P. J. (2011). Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophys. Res. Lett., 38(18), L18301. https://doi.org/10.1029/2011GL048677

Rolf, T., Coltice, N., and Tackley, P. J. (2012). Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle. Earth Planet. Sci. Lett., 351-352, 134–146. https://doi.org/10.1016/j.jpgl.2012.07.011

Rolf, T., Capitanio, F. A., and Tackley, P. J. (2018). Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophysics, 746, 339–351. https://doi.org/10.1016/j.tecto.2017.04.031

Rozel, A., Ricard, Y., and Bercovici, D. (2011). A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophys. J. Int., 184(2), 719–728. https://doi.org/10.1111/j.1365-246X.2010.04875.x

Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J., and Gerya, T. (2017). Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 545(7654), 332–335. https://doi.org/10.1038/nature22042

Shemenda, A. I. (1992). Horizontal lithosphere compression and subduction: constraints provided by physical modeling. J. Geophys. Res.: Solid Earth, 97(B7), 11097–11116. https://doi.org/10.1029/92JB00177

Sibson, R. H., and Rowland, J. V. (2003). Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand. Geophys. J. Int., 154(2), 584–594. https://doi.org/10.1046/j.1365-246X.2003.01965.x

Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. J. Geophys. Res.: Planets, 105(E7), 17563–11578. https://doi.org/10.1029/2000JE001240

Sobolev, S. V., and Brown, M. (2019). Surface erosion events controlled the evolution of plate tectonics on Earth. Nature, 570(7759), 52–57. https://doi.org/10.1038/s41586-019-1258-4

Solomatov, V. S. (2004). Initiation of subduction by small-scale convection. J. Geophys. Res.: Solid Earth, 109(B1), B01412. https://doi.org/10.1029/2003JB002628

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O. (2010). The dynamics of plate tectonics and mantle flow: from local to global scales. Science, 329(5995), 1033–1038. https://doi.org/10.1126/science.1191223

Stein, C., Schmalzl, J., and Hansen, U. (2004). The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys. Earth Planet. Inter., 142(3-4), 225–255. https://doi.org/10.1016/j.pepi.2004.01.006

Stern, R. J. (2004). Subduction initiation: Spontaneous and induced. Earth Planet. Sci. Lett., 226(3-4), 275–292. https://doi.org/10.1016/j.jpgl.2004.08.007

Stern, R. J. (2007). When and how did plate tectonics begin? Theoretical and empirical considerations. Chin. Sci. Bull., 52(5), 578–591. https://doi.org/10.1007/s11434-007-0073-8

Stern, R. J., and Gerya, T. (2018). Subduction initiation in nature and models: A review. Tectonophysics, 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014

Stern, R. J., Gerya, T., and Tackley, P. J. (2018). Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geosci. Front., 9(1), 103–119. https://doi.org/10.1016/j.gsf.2017.06.004

Tackley, P. J. (2000a). Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochem., Geophys., Geosyst., 1(8), 2000G. https://doi.org/10.1029/2000GC000043

Tackley, P J. (2000b). Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem., Geophys., Geosyst., 1(1), 2000G. https://doi.org/10.1029/2000GC000036

Tackley, P. J. (2000c). Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288(5473), 2002–2007. https://doi.org/10.1126/science.288.5473.2002

Tang, C. A., Webb, A. A. G., Moore, W. B., Wang, Y. Y., Ma, T. H., and Chen, T. T. (2020). Breaking Earth’s shell into a global plate network. Nat. Commun., 11(1), 3621. https://doi.org/10.1038/s41467-020-17480-2

Tetreault, J. L., and Buiter, S. J. H. (2012). Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res.: Solid Earth, 117(B8), B08403. https://doi.org/10.1029/2012JB009316

Thielmann, M., and Kaus, B. J. P. (2012). Shear heating induced lithospheric-scale localization: Does it result in subduction?. Earth Planet. Sci. Lett., 359-360, 1–13. https://doi.org/10.1016/j.jpgl.2012.10.002

Toth, J., and Gurnis, M. (1998). Dynamics of subduction initiation at preexisting fault zones. J. Geophys. Res.: Solid Earth, 103(B8), 18053–18067. https://doi.org/10.1029/98JB01076

Turcotte, D., and Schubert, G. (2014). Geodynamics (3rd ed). Cambridge: Cambridge University Press.222

Turcotte, D. L., and Schubert, G. (2002). Geodynamics (2nd ed.). Cambridge: Cambridge University Press.222

Ueda, K., Gerya, T., and Sobolev, S. V. (2008). Subduction initiation by thermal-chemical plumes: Numerical studies. Phys. Earth Planet. Inter., 171(1-4), 296–312. https://doi.org/10.1016/j.pepi.2008.06.032

Uppalapati, S., Rolf, T., Crameri, F., and Werner, S. C. (2020). Dynamics of lithospheric overturns and implications for Venus’s surface. J. Geophys. Res.: Planets, 125(11), e2019JE006258. https://doi.org/10.1029/2019je006258

Uyeda, S., and Ben-Avraham, Z. (1972). Origin and development of the Philippine Sea. Nat. Phys. Sci., 240(104), 176–178. https://doi.org/10.1038/physci240176a0

van der Lee, S., Regenauer-Lieb, K., and Yuen, D. A. (2008). The role of water in connecting past and future episodes of subduction. Earth Planet. Sci. Lett., 273(1-2), 15–27. https://doi.org/10.1016/j.jpgl.2008.04.041

van Hinsbergen, D. J. J., Peters, K., Maffione, M., Spakman, W., Guilmette, C., Thieulot, C., Plümper, O., Gürer, D., Brouwer, F. M.,.. Kaymakcı, N. (2015). Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem., Geophys., Geosyst., 16(6), 1771–1785. https://doi.org/10.1002/2015GC005745

van Hunen, J., and Moyen, J. F. (2012). Archean subduction: fact or fiction?. Annu. Rev. Earth Planet. Sci., 40, 195–219. https://doi.org/10.1146/annurev-earth-042711-105255

Vogt, K., and Gerya, T. V. (2014). From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondw. Res., 25(2), 494–508. https://doi.org/10.1016/j.gr.2012.11.002

von Hagke, C., Philippon, M., Avouac, J. P., and Gurnis, M. (2016). Origin and time evolution of subduction polarity reversal from plate kinematics of Southeast Asia. Geology, 44(8), 659–662. https://doi.org/10.1130/G37821.1

Wan, B., Wu, F. Y, Chen, L., Zhao, L., Liang, X. F., Xiao, W. J., and Zhu, R. X. (2019). Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China Earth Sciences, 62, 2005–2016. https://doi.org/10.1007/s11430-019-9393-4

Watts, A. B., and Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet. Sci. Lett., 213(1-2), 113–131. https://doi.org/10.1016/S0012-821X(03)00289-9

Wu, F. Y., Wan, B., Zhao, L., Xiao, W. J., and Zhu, R. X. (2020). Tethyan geodynamics. Acta Petrologica Sinica, 36, 1627–1674. (in Chinese with English abstract).

Yang, T., and Gurnis, M. (2016). Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow. Geophys. J. Int., 207(2), 1186–1202. https://doi.org/10.1093/gji/ggw335

Yin, A. (2012). An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth. Lithosphere, 4(6), 553–593. https://doi.org/10.1130/L195.1

Zhang, N., Dang, Z., Huang, C., and Li, Z. X. (2018). The dominant driving force for supercontinent breakup: Plume push or subduction retreat?. Geosci. Front., 9(4), 997–1007. https://doi.org/10.1016/j.gsf.2018.01.010

Zheng, Y. F., and Chen, Y. X. (2016). Continental versus oceanic subduction zones. Natl. Sci. Rev., 3(4), 495–519. https://doi.org/10.1093/nsr/nww049

Zhong, S. J., and Gurnis, M. (1992). Viscous flow model of a subduction zone with a faulted lithosphere: long and short wavelength topography, gravity and geoid. Geophys. Res. Lett., 19(18), 1891–1894. https://doi.org/10.1029/92GL02142

Zhong, S. J., and Gurnis, M. (1995). Mantle convection with plates and mobile, faulted plate margins. Science, 267(5199), 838–843. https://doi.org/10.1126/science.267.5199.838

Zhong, S. J., and Gurnis, M. (1996). Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow. Nature, 383(6597), 245–247. https://doi.org/10.1038/383245a0

Zhong, S. J., Gurnis, M., and Moresi, L. (1998). Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res.: Solid Earth, 103(B7), 15255–15268. https://doi.org/10.1029/98JB00605

Zhong, S. J., Zuber, M. T., Moresi, L., and Gurnis, M. (2000). Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res.: Solid Earth, 105(B5), 11063–11082. https://doi.org/10.1029/2000JB900003

Zhong, S. J., Zhang, N., Li, Z. X., and Roberts, J. H. (2007). Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett., 261(3-4), 551–564. https://doi.org/10.1016/j.jpgl.2007.07.049

Zhong, X. Y., and Li, Z. H. (2019). Forced subduction initiation at passive continental margins: velocity-driven versus stress-driven. Geophys. Res. Lett., 46(20), 11054–11064. https://doi.org/10.1029/2019GL084022

Zhong, X. Y., and Li, Z. H. (2020). Subduction initiation during collision-induced subduction transference: numerical modeling and implications for the tethyan evolution. J. Geophys. Res.: Solid Earth, 125(2), e2019JB019288. https://doi.org/10.1029/2019JB019288

Zhou, X., Li, Z. H., Gerya, T. V., Stern, R. J., Xu, Z. Q., and Zhang, J. J. (2018). Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages. Geology, 46(7), 607–610. https://doi.org/10.1130/G40154.1

Zhou, X., Li, Z. H., Gerya, T. V., and Stern, R. J. (2020). Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness . Science Advances, 6(10), 1–10. https://doi.org/10.1126/sciadv.aaz1048

[1]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[2]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[3]

YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009

[4]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[5]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[6]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[7]

GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002

[8]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[9]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[10]

Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics. doi: 10.26464/epp2021027

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?

Gang Lu, Liang Zhao, Ling Chen, Bo Wan, FuYuan Wu