Citation:
Lu, G., Zhao, L., Chen, L., Wan, B. and Wu, F. Y. (2021). Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?. Earth Planet. Phys., 5(2), 123–140doi: 10.26464/epp2021014
2021, 5(2): 123-140. doi: 10.26464/epp2021014
Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
The theory of plate tectonics came together in the 1960s, achieving wide acceptance after 1968. Since then it has been the most successful framework for investigations of Earth’s evolution. Subduction of the oceanic lithosphere, as the engine that drives plate tectonics, has played a key role in the theory. However, one of the biggest unanswered questions in Earth science is how the first subduction was initiated, and hence how plate tectonics began. The main challenge is how the strong lithosphere could break and bend if plate tectonics-related weakness and slab-pull force were both absent. In this work we review state-of-the-art subduction initiation (SI) models with a focus on their prerequisites and related driving mechanisms. We note that the plume-lithosphere-interaction and mantle-convection models do not rely on the operation of existing plate tectonics and thus may be capable of explaining the first SI. Re-investigation of plate-driving mechanisms reveals that mantle drag may be the missing driving force for surface plates, capable of triggering initiation of the first subduction. We propose a composite driving mechanism, suggesting that plate tectonics may be driven by both subducting slabs and convection currents in the mantle. We also discuss and try to answer the following question: Why has plate tectonics been observed only on Earth?
Agard, P., Jolivet, L., Vrielynck, B., Burov, E., and Monié, P. (2007). Plate acceleration: The obduction trigger?. Earth Planet. Sci. Lett., 258(3-4), 428–441. https://doi.org/10.1016/j.jpgl.2007.04.002 |
Anderson, D. L. (2001). Geophysics. Top-down tectonics?. Science, 293(5537), 2016–2018. https://doi.org/10.1126/science.1065448 |
Anderson, D. L. (2002). Plate tectonics as a far-from-equilibrium self-organized system. In S. Stein, et al. (Eds.), Plate Boundary Zones (pp. 411-425). Washington: American Geophysical Union. https://doi.org/10.1029/GD030p0411222 |
Armann, M., and Tackley, P. J. (2012). Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: Two-dimensional models. J. Geophys. Res.: Planets, 117(E12), E12003. https://doi.org/10.1029/2012JE004231 |
Baes, M., Govers, R., and Wortel, R. (2011). Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from numerical models. Geophys. J. Int., 184(3), 991–1008. https://doi.org/10.1111/j.1365-246X.2010.04896.x |
Baes, M., and Sobolev, S. V. (2017). Mantle flow as a trigger for subduction initiation: a missing element of the wilson cycle concept. Geochem., Geophys., Geosyst., 18(12), 4469–4486. https://doi.org/10.1002/2017GC006962 |
Baes, M., Sobolev, S. V., and Quinteros, J. (2018). Subduction initiation in mid-ocean induced by mantle suction flow. Geophys. J. Int., 215(3), 1515–1522. https://doi.org/10.1093/gji/ggy335 |
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M., and Hirose, K. (2017). Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci., 10(3), 236–240. https://doi.org/10.1038/ngeo2898 |
Becker, T. W., and Faccenna, C. (2011). Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett., 310(3-4), 453–461. https://doi.org/10.1016/j.jpgl.2011.08.021 |
Bercovici, D. (2003). The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205(3-4), 107–121. https://doi.org/10.1016/S0012-821X(02)01009-9 |
Bercovici, D., and Ricard, Y. (2005). Tectonic plate generation and two-phase damage: Void growth versus grain size reduction. J. Geophys. Res.: Solid Earth, 110(B3), B03401. https://doi.org/10.1029/2004JB003181 |
Bercovici, D., and Ricard, Y. (2013). Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow. Earth Planet. Sci. Lett., 365, 275–288. https://doi.org/10.1016/j.jpgl.2013.02.002 |
Bercovici, D., and Ricard, Y. (2014). Plate tectonics, damage and inheritance. Nature, 508(7497), 513–516. https://doi.org/10.1038/nature13072 |
Bercovici, D., Tackley, P. J., and Ricard, Y. (2015). The generation of plate tectonics from mantle dynamics. In G. Schubert (Ed.), Treatise on Geophysics (2nd ed, Vol. 7). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00135-4222 |
Billen, M. I. (2008). Modeling the dynamics of subducting slabs. Ann. Rev. Earth Planet. Sci., 36, 325–356. https://doi.org/10.1146/annurev.earth.36.031207.124129 |
Buffett, B. A. (2006). Plate force due to bending at subduction zones. J. Geophys. Res.: Solid Earth, 111(B9), B09405. https://doi.org/10.1029/2006JB004295 |
Buiter, S. J. H., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry, W., le Pourhiet, L., Mishin, Y., Egholm, D. L.,.. Beaumont, C. (2016). Benchmarking numerical models of brittle thrust wedges. J. Struct. Geol., 92, 140–177. https://doi.org/10.1016/j.jsg.2016.03.003 |
Burov, E., and Cloetingh, S. (2010). Plume-like upper mantle instabilities drive subduction initiation. Geophys. Res. Lett., 37(3), L03309. https://doi.org/10.1029/2009gl041535 |
Burov, E. B. (2011). Rheology and strength of the lithosphere. Mar. Petrol. Geol., 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008 |
Byerlee, J. (1978). Friction of rocks. Pure Appl. Geophys., 116(4-5), 615–626. https://doi.org/10.1007/BF00876528 |
Casey, J. F., and Dewey, J. F. (1984). Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres-implications for ophiolitic geology and obduction. Geological Society, London, Special Publication, 13, 269–290. https://doi.org/10.1144/GSL.SP.1984.013.01.22 |
Chapple, W. M., and Tullis, T. E. (1977). Evaluation of the forces that drive the plates. J. Geophys. Res., 82(14), 1967–1984. https://doi.org/10.1029/jb082i014p01967 |
Chen, L., Wang, X., Liang, X. F., Wan, B., and Liu, L. J. (2020). Subduction tectonics vs. Plume tectonics—Discussion on driving forces for plate motion. Sci. China Earth Sci., 63(3), 315–328. https://doi.org/10.1007/s11430-019-9538-2 |
Cloetingh, S., Wortel, R., Vlaar, N. J. (1989). On the initiation of subduction. J. Geophys. Res., 129, 7–25. |
Cloetingh, S. A. P. L., Wortel, M. J. R., and Vlaar, N. J. (1982). Evolution of passive continental margins and initiation of subduction zones. Nature, 297(5862), 139–142. https://doi.org/10.1038/297139a0 |
Coltice, N., Rolf, T., Tackley, P. J., and Labrosse, S. (2012). Dynamic causes of the relation between area and age of the Ocean Floor. Science, 336(6079), 335–338. https://doi.org/10.1126/science.1219120 |
Coltice, N., Gérault, M., and Ulvrová, M. (2017). A mantle convection perspective on global tectonics. Earth-Sci. Rev., 165, 120–150. https://doi.org/10.1016/j.earscirev.2016.11.006 |
Coltice, N., Husson, L., Faccenna, C., and Arnould, M. (2019). What drives tectonic plates?. Sci. Adv., 5(10), eaax4295. https://doi.org/10.1126/sciadv.aax4295 |
Conrad, C. P., and Lithgow-Bertelloni, C. (2002). How mantle slabs drive plate tectonics. Science, 298(5591), 207–209. https://doi.org/10.1126/science.1074161 |
Conrad, C. P., and Lithgow-Bertelloni, C. (2004). The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J. Geophys. Res.: Solid Earth, 109(B10), B10407. https://doi.org/10.1029/2004JB002991 |
Cooper, P. A., and Taylor, B. (1985). Polarity reversal in the Solomon Islands arc. Nature, 314(6010), 428–430. https://doi.org/10.1038/314428a0 |
Crameri, F., and Kaus, B. J. P. (2010). Parameters that control lithospheric-scale thermal localization on terrestrial planets. Geophys. Res. Lett., 37(9), L09308. https://doi.org/10.1029/2010GL042921 |
Crameri, F., Tackley, P. J., Meilick, I., Gerya, T. V., and Kaus, B. J. P. (2012). A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., 39(3), L03306. https://doi.org/10.1029/2011GL050046 |
Crameri, F., and Tackley, P. J. (2014). Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface. J. Geophys. Res.: Solid Earth, 119(7), 5921–5942. https://doi.org/10.1002/2014JB010939 |
Crameri, F., and Tackley, P. J. (2015). Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection. J. Geophys. Res.: Solid Earth, 120(5), 3680–3706. https://doi.org/10.1002/2014JB011664 |
Crameri, F., and Tackley, P. J. (2016). Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Prog. Earth Planet. Sci., 3(1), 30. https://doi.org/10.1186/s40645-016-0103-8 |
Crameri, F., Conrad, C. P., Montési, L., and Lithgow-Bertelloni, C. R. (2019). The dynamic life of an oceanic plate. Tectonophysics, 760, 107–135. https://doi.org/10.1016/j.tecto.2018.03.016 |
Crameri, F., Magni, V., Domeier, M., Shephard, G. E., Chotalia, K., Cooper, G., Eakin, C. M., Grima, A. G., Gürer, D.,.. Thielmann, M. (2020). A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun., 11(1), 3750. https://doi.org/10.1038/s41467-020-17522-9 |
Dal Zilio, L., Faccenda, M., and Capitanio, F. (2018). The role of deep subduction in supercontinent breakup. Tectonophysics, 746, 312–324. https://doi.org/10.1016/j.tecto.2017.03.006 |
Dal Zilio, L., Kissling, E., Gerya, T., and van Dinther, Y. (2020). Slab rollback orogeny model: a test of concept. Geophys. Res. Lett., 47(18), e2020GL089917. https://doi.org/10.1029/2020GL089917 |
Davaille, A., Smrekar, S. E., and Tomlinson, S. (2017). Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci., 10(5), 349–355. https://doi.org/10.1038/ngeo2928 |
Davies, G. F. (1989). Mantle convection model with a dynamic plate: topography, heat flow and gravity anomalies. Geophys. J. Int., 98(3), 461–464. https://doi.org/10.1111/j.1365-246X.1989.tb02283.x |
Davies, G. F. (2009). Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet. Sci. Lett., 287(3-4), 513–518. https://doi.org/10.1016/j.jpgl.2009.08.038 |
Doin, M. P., and Henry, P. (2001). Subduction initiation and continental crust recycling: the roles of rheology and eclogitization. Tectonophysics, 342(1-2), 163–191. https://doi.org/10.1016/S0040-1951(01)00161-5 |
Duretz, T., Agard, P., Yamato, P., Ducassou, C., Burov, E. B., and Gerya, T. V. (2016). Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case. Gondw. Res., 32, 1–10. https://doi.org/10.1016/j.gr.2015.02.002 |
Dymkova, D., and Gerya, T. (2013). Porous fluid flow enables oceanic subduction initiation on Earth. Geophys. Res. Lett., 40(21), 5671–5676. https://doi.org/10.1002/2013GL057798 |
Erickson, S. G. (1993). Sedimentary loading, lithospheric flexure, and subduction initiation at passive margins. Geology, 21(2), 125–128. https://doi.org/10.1130/0091-7613(1993)021<0125:SLLFAS>2.3.CO;2 |
Erickson, S. G., and Arkani-Hamed, J. (1993). Subduction initiation at passive margins: the Scotian Basin, Eastern Canada as a potential example. Tectonics, 12(3), 678–687. https://doi.org/10.1029/92TC02602 |
Evans, B., and Goetze, C. (1979). The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J. Geophys. Res.: Solid Earth, 84(B10), 5505–5524. https://doi.org/10.1029/JB084iB10p05505 |
Faccenda, M., Gerya, T. V., and Chakraborty, S. (2008). Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos, 103(1-2), 257–287. https://doi.org/10.1016/j.lithos.2007.09.009 |
Faccenna, C., Becker, T. W., Lallemand, S., and Steinberger, B. (2012). On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophys. Res. Lett., 39(3), L03305. https://doi.org/10.1029/2011GL050155 |
Faccenna, C., Becker, T. W., Conrad, C. P., and Husson, L. (2013). Mountain building and mantle dynamics. Tectonics, 32(1), 80–93. https://doi.org/10.1029/2012TC003176 |
Forsyth, D. W., and Uyeda, S. (1975). On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43(1), 163–200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x |
Fowler, A. C., and O'Brien, S. B. G. (1996). A mechanism for episodic subduction on Venus. J. Geophys. Res.: Planets, 101(E2), 4755–4763. https://doi.org/10.1029/95JE03261 |
Fyfe, W. S., and Leonardos, Jr. O. H. (1977). Speculations on the causes of crustal rifting and subduction, with applications to the atlantic margin of Brazil. Tectonophysics, 42(1), 29–36. https://doi.org/10.1016/0040-1951(77)90015-4 |
Gerbault, M. (2000). At what stress level is the central Indian Ocean lithosphere buckling?. Earth Planet. Sci. Lett., 178(1-2), 165–181. https://doi.org/10.1016/S0012-821X(00)00054-6 |
Gerya, T. (2011). Future directions in subduction modeling. J. Geodyn., 52(5), 344–378. https://doi.org/10.1016/j.jog.2011.06.005 |
Gerya, T. V., Connolly, J. A. D., and Yuen, D. A. (2008). Why is terrestrial subduction one-sided?. Geology, 36(1), 43–46. https://doi.org/10.1130/G24060A.1 |
Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., and Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221–225. https://doi.org/10.1038/nature15752 |
Ghosh, A., Holt, W. E., Flesch, L. M., and Haines, A. J. (2006). Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34(5), 321–324. https://doi.org/10.1130/G22071.1 |
Ghosh, A., and Holt, W. E. (2012). Plate motions and stresses from global dynamic models. Science, 335(6070), 839–843. https://doi.org/10.1126/science.1214209 |
Goetze, C., and Evans, B. (1979). Stress and temperature in bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astr. Soc., 59(3), 463–478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x |
Goren, L., Aharonov, E., Mulugeta, G., Koyi, H. A., and Mart, Y. (2008). Ductile deformation of passive margins: A new mechanism for subduction initiation. J. Geophys. Res.: Solid Earth, 113(B8), B08411. https://doi.org/10.1029/2005JB004179 |
Govers, R., and Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1-2), 505–523. https://doi.org/10.1016/j.jpgl.2005.03.022 |
Guillot, S., Schwartz, S., Reynard, B., Agard, P., and Prigent, C. (2015). Tectonic significance of serpentinites. Tectonophysics, 646, 1–19. https://doi.org/10.1016/j.tecto.2015.01.020 |
Guilmette, C., Smit, M. A., van Hinsbergen, D. J. J., Gürer, D., Corfu, F., Charette, B., Maffione, M., Rabeau, O., and Savard, D. (2018). Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci., 11(9), 688–695. https://doi.org/10.1038/s41561-018-0209-2 |
Gurnis, M., Hall, C., and Lavier, L. (2004). Evolving force balance during incipient subduction. Geochem., Geophys., Geosyst., 5(7), Q07001. https://doi.org/10.1029/2003GC000681 |
Hager, B. H., and O’Connell, R. J. (1981). A simple global model of plate dynamics and mantle convection. J. Geophys. Res.: Solid Earth, 86(B6), 4843–4867. https://doi.org/10.1029/JB086iB06p04843 |
Hales, A. L. (1936). Convection currents in the Earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 3(9), 372–379. https://doi.org/10.1111/j.1365-246X.1936.tb01744.x |
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., and Müller, R. D. (2003). Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet. Sci. Lett., 212(1-2), 15–30. https://doi.org/10.1016/S0012-821X(03)00242-5 |
Hansen, V. L. (2007). Subduction origin on early Earth: A hypothesis. Geology, 35(12), 1059–1062. https://doi.org/10.1130/G24202A.1 |
Hirth, G., and Kohlstedt, D. L. (2004). Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In J. Eiler (Ed.), Inside the Subduction Factory (Vol. 138, pp. 83-105). Washington: American Geophysical Union. https://doi.org/10.1029/138GM06222 |
Holmes, A. (1931). Radioactivity and earth movements. Trans. Geol. Soc. Glasgow, 18(3), 559–606. https://doi.org/10.1144/transglas.18.3.559 |
Hunter, J., and Watts, A. B. (2016). Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophys. J. Int., 207(1), 288–316. https://doi.org/10.1093/gji/ggw275 |
Johnson, T. E., Brown, M., Kaus, B. J. P., and VanTongeren, J. A. (2014). Delamination and recycling of archaean crust caused by gravitational instabilities. Nat. Geosci., 7(1), 47–52. https://doi.org/10.1038/ngeo2019 |
Karato, S. I., and Barbot, S. (2018). Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus. Sci. Rep., 8(1), 11884. https://doi.org/10.1038/s41598-018-30174-6 |
Karig, D. E. (1982). Initiation of subduction zones: implications for arc evolution and ophiolite development. Geol. Soc. Lond. Spec. Pub., 10(1), 563–576. https://doi.org/10.1144/GSL.SP.1982.010.01.37 |
Keenan, T. E., Encarnación, J., Buchwaldt, R., Fernandez, D., Mattinson, J., Rasoazanamparany, C., and Luetkemeyer, P. B. (2016). Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proc. Natl. Acad. Sci. USA, 113(47), E7359–E7366. https://doi.org/10.1073/pnas.1609999113 |
Kemp, D. V, and Stevenson, D. J. (1996). A tensile, flexural model for the initiation of subduction. Geophys. J. Int., 125(1), 73–93. https://doi.org/10.1111/j.1365-246X.1996.tb06535.x |
Kreemer, C. (2009). Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. Journal of Geophysical Research: Solid Earth, 114(10), 1–18. https://doi.org/10.1029/2009JB006416 |
Korenaga, J. (2007). Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics?. J. Geophys. Res.: Solid Earth, 112(B5), B05408. https://doi.org/10.1029/2006JB004502 |
Korenaga, J. (2013). Initiation and evolution of plate tectonics on earth: theories and observations. Annu. Rev. Earth Planet. Sci., 41, 117–151. https://doi.org/10.1146/annurev-earth-050212-124208 |
Kreemer, C., Blewitt, G., and Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochem., Geophys., Geosyst., 15(10), 3849–3889. https://doi.org/10.1002/2014GC005407 |
Landuyt, W., and Bercovici, D. (2009). Formation and structure of lithospheric shear zones with damage. Phys. Earth Planet. Inter., 175(3-4), 115–126. https://doi.org/10.1016/j.pepi.2009.03.005 |
Leng, W., and Gurnis, M. (2015). Subduction initiation at relic arcs. Geophys. Res. Lett., 42(17), 7014–7021. https://doi.org/10.1002/2015GL064985 |
Li, Z. H., and Ribe, N. M. (2012). Dynamics of free subduction from 3-D boundary element modeling. J. Geophys. Res.: Solid Earth, 117(B6), B06408. https://doi.org/10.1029/2012JB009165 |
Lithgow-Bertelloni, C., and Silver, P. G. (1998). Dynamic topography, plate driving forces and the African superswell. Nature, 395(6699), 269–272. https://doi.org/10.1038/26212 |
Lourenço, D. L., Rozel, A., and Tackley, P. J. (2016). Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett., 439, 18–28. https://doi.org/10.1016/j.jpgl.2016.01.024 |
Lourenço, D. L., Rozel, A. B., Ballmer, M. D., and Tackley, P. J. (2020). Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on earth-like planets. Geochem., Geophys., Geosyst., 21(4), e2019GC008756. https://doi.org/10.1029/2019GC008756 |
Lu, G., Kaus, B. J. P., Zhao, L., and Zheng, T. Y. (2015). Self-consistent subduction initiation induced by mantle flow. Terra Nova, 27(2), 130–138. https://doi.org/10.1111/ter.12140 |
Maffione, M., Thieulot, C., van Hinsbergen, D. J. J., Morris, A., Plümper, O., and Spakman, W. (2015). Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites. Geochem., Geophys., Geosyst., 16(6), 1753–1770. https://doi.org/10.1002/2015GC005746 |
Maffione, M., van Hinsbergen, D. J. J., de Gelder, G. I. N. O., van der Goes, F. C., and Morris, A. (2017). Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria. J. Geophys. Res.: Solid Earth, 122(5), 3953–3976. https://doi.org/10.1002/2016JB013821 |
Mallard, C., Coltice, N., Seton, M., Müller, R. D., and Tackley, P. J. (2016). Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature, 535(7610), 140–143. https://doi.org/10.1038/nature17992 |
Marques, F. O., Nikolaeva, K., Assumpção, M., Gerya, T. V., Bezerra, F. H. R., do Nascimento, A. F., and Ferreira, J. M. (2013). Testing the influence of far-field topographic forcing on subduction initiation at a passive margin. Tectonophysics, 608, 517–524. https://doi.org/10.1016/j.tecto.2013.08.035 |
Marques, F. O., Cabral, F. R., Gerya, T. V., Zhu, G., and May, D. A. (2014). Subduction initiates at straight passive margins. Geology, 42(4), 331–334. https://doi.org/10.1130/G35246.1 |
Mart, Y., Aharonov, E., Mulugeta, G., Ryan, W., Tentler, T., and Goren, L. (2005). Analogue modelling of the initiation of subduction. Geophys. J. Int., 160(3), 1081–1091. https://doi.org/10.1111/j.1365-246X.2005.02544.x |
Matsumoto, T., and Tomoda, Y. (1983). Numerical simulation of the initiation of subduction at the fracture zone. J. Phys. Earth, 31(3), 183–194. https://doi.org/10.4294/jpe1952.31.183 |
McKenzie, D. P. (1977). The initiation of trenches: a finite amplitude instability. In M. Talwani and W. C. Pitman Ⅲ (Eds.), Island Arcs, Deep Sea Trenches and Back-Arc basins (Vol. 1, pp. 57-61). Washington: AGU. https://doi.org/10.1029/ME001p0057222 |
Mitchell, A. H. G. (1984). Initiation of subduction by post-collision foreland thrusting and back-thrusting. J. Geodyn., 1(2), 103–120. https://doi.org/10.1016/0264-3707(84)90023-1 |
Molnar, P., England, P., and Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31(4), 357–396. https://doi.org/10.1029/93RG02030 |
Moresi, L., and Solomatov, V. (1998). Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int., 133(3), 669–682. https://doi.org/10.1046/j.1365-246X.1998.00521.x |
Moresi, L. N., and Solomatov, V. S. (1995). Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids, 7(9), 2154–2162. https://doi.org/10.1063/1.868465 |
Mueller, S., and Phillips, R. J. (1991). On the initiation of subduction. J. Geophys. Res.: Solid Earth, 96(B1), 651–665. https://doi.org/10.1029/90JB02237 |
Nair, R., and Chacko, T. (2008). Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 36(7), 583–586. https://doi.org/10.1130/G24773A.1 |
Nakagawa, T., and Iwamori, H. (2017). Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle. J. Geophys. Res.: Solid Earth, 122(10), 8431–8445. https://doi.org/10.1002/2017JB014052 |
Nikolaeva, K., Gerya, T. V., and Connolly, J. A. D. (2008). Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys. Earth Planet. Inter., 171(1-4), 336–356. https://doi.org/10.1016/j.pepi.2008.06.026 |
Nikolaeva, K., Gerya, T. V., and Marques, F. O. (2010). Subduction initiation at passive margins: Numerical modeling. J. Geophys. Res.: Solid Earth, 115(B3), B03406. https://doi.org/10.1029/2009JB006549 |
Nikolaeva, K., Gerya, T. V., and Marques, F. O. (2011). Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology, 39(5), 463–466. https://doi.org/10.1130/G31972.1 |
Niu, Y. L., O’Hara, M. J., and Pearce, J. A. (2003). Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective. J. Petrol., 44(5), 851–866. https://doi.org/10.1093/petrology/44.5.851 |
Niu, Y. L. (2020). On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. J. Asian Earth Sci., 194, 104367. https://doi.org/10.1016/j.jseaes.2020.104367 |
O’Neill, C., Marchi, S., Bottke, W., and Fu, R. (2020). The role of impacts on Archaean tectonics. Geology, 48(2), 174–178. https://doi.org/10.1130/G46533.1 |
Puster, P., Hager, B. H., and Jordan, T. H. (1995). Mantle convection experiments with evolving plates. Geophys. Res. Lett., 22(16), 2223–2226. https://doi.org/10.1029/95GL01998 |
Pysklywec, R. N. (2001). Evolution of subducting mantle lithosphere at a continental plate boundary. Geophys. Res. Lett., 28(23), 4399–4402. https://doi.org/10.1029/2001GL013567 |
Ranalli, G. (1995). Rheology of the Earth (2nd ed.). London: Chapman & Hall.222 |
Ranero, C. R., Morgan, J. P., McIntosh, K., and Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956), 367–373. https://doi.org/10.1038/nature01961 |
Reese, C. C., Solomatov, V. S., and Moresi, L. N. (1999). Non-newtonian stagnant lid convection and magmatic resur facing on venus. Icarus, 139(1), 67–80. https://doi.org/10.1006/icar.1999.6088 |
Regenauer-Lieb, K., Yuen, D. A., and Branlund, J. (2001). The initiation of subduction: criticality by addition of water?. Science, 294(5542), 578–580. https://doi.org/10.1126/science.1063891 |
Rey, P. F., Coltice, N., and Flament, N. (2014). Spreading continents kick-started plate tectonics. Nature, 513(7518), 405–408. https://doi.org/10.1038/nature13728 |
Ribe, N. M. (2010). Bending mechanics and mode selection in free subduction: a thin-sheet analysis. Geophys. J. Int., 180(2), 559–576. https://doi.org/10.1111/j.1365-246X.2009.04460.x |
Rolf, T., and Tackley, P. J. (2011). Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophys. Res. Lett., 38(18), L18301. https://doi.org/10.1029/2011GL048677 |
Rolf, T., Coltice, N., and Tackley, P. J. (2012). Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle. Earth Planet. Sci. Lett., 351-352, 134–146. https://doi.org/10.1016/j.jpgl.2012.07.011 |
Rolf, T., Capitanio, F. A., and Tackley, P. J. (2018). Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophysics, 746, 339–351. https://doi.org/10.1016/j.tecto.2017.04.031 |
Rozel, A., Ricard, Y., and Bercovici, D. (2011). A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophys. J. Int., 184(2), 719–728. https://doi.org/10.1111/j.1365-246X.2010.04875.x |
Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J., and Gerya, T. (2017). Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 545(7654), 332–335. https://doi.org/10.1038/nature22042 |
Shemenda, A. I. (1992). Horizontal lithosphere compression and subduction: constraints provided by physical modeling. J. Geophys. Res.: Solid Earth, 97(B7), 11097–11116. https://doi.org/10.1029/92JB00177 |
Sibson, R. H., and Rowland, J. V. (2003). Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand. Geophys. J. Int., 154(2), 584–594. https://doi.org/10.1046/j.1365-246X.2003.01965.x |
Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. J. Geophys. Res.: Planets, 105(E7), 17563–11578. https://doi.org/10.1029/2000JE001240 |
Sobolev, S. V., and Brown, M. (2019). Surface erosion events controlled the evolution of plate tectonics on Earth. Nature, 570(7759), 52–57. https://doi.org/10.1038/s41586-019-1258-4 |
Solomatov, V. S. (2004). Initiation of subduction by small-scale convection. J. Geophys. Res.: Solid Earth, 109(B1), B01412. https://doi.org/10.1029/2003JB002628 |
Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O. (2010). The dynamics of plate tectonics and mantle flow: from local to global scales. Science, 329(5995), 1033–1038. https://doi.org/10.1126/science.1191223 |
Stein, C., Schmalzl, J., and Hansen, U. (2004). The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys. Earth Planet. Inter., 142(3-4), 225–255. https://doi.org/10.1016/j.pepi.2004.01.006 |
Stern, R. J. (2004). Subduction initiation: Spontaneous and induced. Earth Planet. Sci. Lett., 226(3-4), 275–292. https://doi.org/10.1016/j.jpgl.2004.08.007 |
Stern, R. J. (2007). When and how did plate tectonics begin? Theoretical and empirical considerations. Chin. Sci. Bull., 52(5), 578–591. https://doi.org/10.1007/s11434-007-0073-8 |
Stern, R. J., and Gerya, T. (2018). Subduction initiation in nature and models: A review. Tectonophysics, 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014 |
Stern, R. J., Gerya, T., and Tackley, P. J. (2018). Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geosci. Front., 9(1), 103–119. https://doi.org/10.1016/j.gsf.2017.06.004 |
Tackley, P. J. (2000a). Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochem., Geophys., Geosyst., 1(8), 2000G. https://doi.org/10.1029/2000GC000043 |
Tackley, P J. (2000b). Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem., Geophys., Geosyst., 1(1), 2000G. https://doi.org/10.1029/2000GC000036 |
Tackley, P. J. (2000c). Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288(5473), 2002–2007. https://doi.org/10.1126/science.288.5473.2002 |
Tang, C. A., Webb, A. A. G., Moore, W. B., Wang, Y. Y., Ma, T. H., and Chen, T. T. (2020). Breaking Earth’s shell into a global plate network. Nat. Commun., 11(1), 3621. https://doi.org/10.1038/s41467-020-17480-2 |
Tetreault, J. L., and Buiter, S. J. H. (2012). Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res.: Solid Earth, 117(B8), B08403. https://doi.org/10.1029/2012JB009316 |
Thielmann, M., and Kaus, B. J. P. (2012). Shear heating induced lithospheric-scale localization: Does it result in subduction?. Earth Planet. Sci. Lett., 359-360, 1–13. https://doi.org/10.1016/j.jpgl.2012.10.002 |
Toth, J., and Gurnis, M. (1998). Dynamics of subduction initiation at preexisting fault zones. J. Geophys. Res.: Solid Earth, 103(B8), 18053–18067. https://doi.org/10.1029/98JB01076 |
Turcotte, D., and Schubert, G. (2014). Geodynamics (3rd ed). Cambridge: Cambridge University Press.222 |
Turcotte, D. L., and Schubert, G. (2002). Geodynamics (2nd ed.). Cambridge: Cambridge University Press.222 |
Ueda, K., Gerya, T., and Sobolev, S. V. (2008). Subduction initiation by thermal-chemical plumes: Numerical studies. Phys. Earth Planet. Inter., 171(1-4), 296–312. https://doi.org/10.1016/j.pepi.2008.06.032 |
Uppalapati, S., Rolf, T., Crameri, F., and Werner, S. C. (2020). Dynamics of lithospheric overturns and implications for Venus’s surface. J. Geophys. Res.: Planets, 125(11), e2019JE006258. https://doi.org/10.1029/2019je006258 |
Uyeda, S., and Ben-Avraham, Z. (1972). Origin and development of the Philippine Sea. Nat. Phys. Sci., 240(104), 176–178. https://doi.org/10.1038/physci240176a0 |
van der Lee, S., Regenauer-Lieb, K., and Yuen, D. A. (2008). The role of water in connecting past and future episodes of subduction. Earth Planet. Sci. Lett., 273(1-2), 15–27. https://doi.org/10.1016/j.jpgl.2008.04.041 |
van Hinsbergen, D. J. J., Peters, K., Maffione, M., Spakman, W., Guilmette, C., Thieulot, C., Plümper, O., Gürer, D., Brouwer, F. M.,.. Kaymakcı, N. (2015). Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem., Geophys., Geosyst., 16(6), 1771–1785. https://doi.org/10.1002/2015GC005745 |
van Hunen, J., and Moyen, J. F. (2012). Archean subduction: fact or fiction?. Annu. Rev. Earth Planet. Sci., 40, 195–219. https://doi.org/10.1146/annurev-earth-042711-105255 |
Vogt, K., and Gerya, T. V. (2014). From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondw. Res., 25(2), 494–508. https://doi.org/10.1016/j.gr.2012.11.002 |
von Hagke, C., Philippon, M., Avouac, J. P., and Gurnis, M. (2016). Origin and time evolution of subduction polarity reversal from plate kinematics of Southeast Asia. Geology, 44(8), 659–662. https://doi.org/10.1130/G37821.1 |
Wan, B., Wu, F. Y, Chen, L., Zhao, L., Liang, X. F., Xiao, W. J., and Zhu, R. X. (2019). Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China Earth Sciences, 62, 2005–2016. https://doi.org/10.1007/s11430-019-9393-4 |
Watts, A. B., and Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet. Sci. Lett., 213(1-2), 113–131. https://doi.org/10.1016/S0012-821X(03)00289-9 |
Wu, F. Y., Wan, B., Zhao, L., Xiao, W. J., and Zhu, R. X. (2020). Tethyan geodynamics. Acta Petrologica Sinica, 36, 1627–1674. (in Chinese with English abstract). |
Yang, T., and Gurnis, M. (2016). Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow. Geophys. J. Int., 207(2), 1186–1202. https://doi.org/10.1093/gji/ggw335 |
Yin, A. (2012). An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth. Lithosphere, 4(6), 553–593. https://doi.org/10.1130/L195.1 |
Zhang, N., Dang, Z., Huang, C., and Li, Z. X. (2018). The dominant driving force for supercontinent breakup: Plume push or subduction retreat?. Geosci. Front., 9(4), 997–1007. https://doi.org/10.1016/j.gsf.2018.01.010 |
Zheng, Y. F., and Chen, Y. X. (2016). Continental versus oceanic subduction zones. Natl. Sci. Rev., 3(4), 495–519. https://doi.org/10.1093/nsr/nww049 |
Zhong, S. J., and Gurnis, M. (1992). Viscous flow model of a subduction zone with a faulted lithosphere: long and short wavelength topography, gravity and geoid. Geophys. Res. Lett., 19(18), 1891–1894. https://doi.org/10.1029/92GL02142 |
Zhong, S. J., and Gurnis, M. (1995). Mantle convection with plates and mobile, faulted plate margins. Science, 267(5199), 838–843. https://doi.org/10.1126/science.267.5199.838 |
Zhong, S. J., and Gurnis, M. (1996). Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow. Nature, 383(6597), 245–247. https://doi.org/10.1038/383245a0 |
Zhong, S. J., Gurnis, M., and Moresi, L. (1998). Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res.: Solid Earth, 103(B7), 15255–15268. https://doi.org/10.1029/98JB00605 |
Zhong, S. J., Zuber, M. T., Moresi, L., and Gurnis, M. (2000). Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res.: Solid Earth, 105(B5), 11063–11082. https://doi.org/10.1029/2000JB900003 |
Zhong, S. J., Zhang, N., Li, Z. X., and Roberts, J. H. (2007). Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett., 261(3-4), 551–564. https://doi.org/10.1016/j.jpgl.2007.07.049 |
Zhong, X. Y., and Li, Z. H. (2019). Forced subduction initiation at passive continental margins: velocity-driven versus stress-driven. Geophys. Res. Lett., 46(20), 11054–11064. https://doi.org/10.1029/2019GL084022 |
Zhong, X. Y., and Li, Z. H. (2020). Subduction initiation during collision-induced subduction transference: numerical modeling and implications for the tethyan evolution. J. Geophys. Res.: Solid Earth, 125(2), e2019JB019288. https://doi.org/10.1029/2019JB019288 |
Zhou, X., Li, Z. H., Gerya, T. V., Stern, R. J., Xu, Z. Q., and Zhang, J. J. (2018). Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages. Geology, 46(7), 607–610. https://doi.org/10.1130/G40154.1 |
Zhou, X., Li, Z. H., Gerya, T. V., and Stern, R. J. (2020). Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness . Science Advances, 6(10), 1–10. https://doi.org/10.1126/sciadv.aaz1048 |
[1] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[2] |
Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007 |
[3] |
YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009 |
[4] |
RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045 |
[5] |
WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033 |
[6] |
BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055 |
[7] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[8] |
Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044 |
[9] |
QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020 |
[10] |
Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics. doi: 10.26464/epp2021027 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)