Citation:
Fan, K., Gao, X. L., Lu, Q. M., and Wang, S. (2021). Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations. Earth Planet. Phys., 5(6), 592–600. http://doi.org/10.26464/epp2021052
2021, 5(6): 592-600. doi: 10.26464/epp2021052
Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations
1. | CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China |
2. | CAS Center for Excellence in Comparative Planetology, Hefei 230026, China |
Using the test particle simulation method, we investigate the stochastic motion of electrons with energy of 300 keV in a monochromatic magnetosonic (MS) wave field. This study is motivated by the violation of the quasi-linear theory assumption, when strong MS waves (amplitude up to ~1 nT) are present in the Earth’s magnetosphere. First, electron motion can become stochastic when the wave amplitude exceeds a certain threshold. If an electron initially resonates with the MS wave via bounce resonance, as the bounce resonance order increases, the amplitude threshold of electron stochastic motion increases until it reaches the peak at about the 11th order in our study, then the amplitude threshold slowly declines. Further, we find that the coexistence of bounce and Landau resonances between electrons and MS waves will significantly reduce the amplitude threshold. In some cases, the electron motion can become stochastic in the field of an MS wave with amplitudes below 1 nT. Regardless, if neither the bounce nor Landau resonance condition is satisfied initially, then the amplitude threshold of stochastic motion shows an increasing trend for lower frequencies and a decreasing trend for higher frequencies, even though the amplitude threshold is always very large (> 5 nT). Our study suggests that electron stochastic motion should also be considered when modeling electron dynamics regulated by intense MS waves in the Earth’s magnetosphere.
Balikhin, M. A., Shprits, Y. Y., Walker, S. N., Chen, L. J., Cornilleau-Wehrlin, N., Dandouras, I., Santolik O., Carr C., Yearby K. H., and Weiss, B. (2015). Observations of discrete harmonics emerging from equatorial noise. Nat. Commun., 6, 7703. https://doi.org/10.1038/ncomms8703 |
Boardsen, S. A., Gallagher, D. L., Gurnett, D. A., Peterson, W. K., and Green, J. L. (1992). Funnel-shaped, low-frequency equatorial waves. J. Geophys. Res., 97(A10), 14967–14976. https://doi.org/10.1029/92JA00827 |
Boardsen, S. A., Hospodarsky, G. B., Kletzing, C. A., Engebretson, M. J., Pfaff, R. F., Wygant, J. R., Kurth W. S., Averkamp T. F., Bounds S. R., … De Pascuale, S. (2016). Survey of the frequency dependent latitudinal distribution of the fast magnetosonic wave mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science waveform receiver plasma wave analysis. J. Geophys. Res. :Space Phys., 121(4), 2902–2921. https://doi.org/10.1002/2015JA021844 |
Boardsen, S. A., Hospodarsky, G. B., Min, K., Averkamp, T. F., Bounds, S. R., Kletzing, C. A., and Pfaff, R. F. (2018). Determining the wave vector direction of equatorial fast magnetosonic waves. Geophys. Res. Lett., 45(16), 7951–7959. https://doi.org/10.1029/2018GL078695 |
Boris, J. P. (1970). Relativistic plasma simulation-optimization of a hybrid code. In Proceedings of the Fourth Conference on Numerical Simulation on Plasmas (pp. 3-67). Washington, D. C. : Naval Research Laboratory.222 |
Cai, B., Wu, Y. F., and Tao, X. (2020). Effects of nonlinear resonance broadening on interactions between electrons and whistler mode waves. Geophys. Res. Lett., 47(11), e2020GL087991. https://doi.org/10.1029/2020GL087991 |
Chen, L., Lin, Z. H., and White, R. (2001). On resonant heating below the cyclotron frequency. Phys. Plasmas, 8(11), 4713–4716. https://doi.org/10.1063/1.1406939 |
Chen, L. J., Thorne, R. M., Jordanova, V. K., and Horne, R. B. (2010). Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res., 115(A11), A11222. https://doi.org/10.1029/2010JA015707 |
Chen, L. J., and Thorne, R. M. (2012). Perpendicular propagation of magnetosonic waves. Geophys. Res. Lett., 39(14), L14102. https://doi.org/10.1029/2012GL052485 |
Chen, L. J., Maldonado, A., Bortnik, J., Thorne, R. M., Li, J. X., Dai, L., and Zhan, X. Y. (2015). Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons. J. Geophys. Res. :Space Phys., 120(8), 6514–6527. https://doi.org/10.1029/2015JA021174 |
Chen, L. J., Sun, J. C., Lu, Q. M., Gao, X. L., Xia, Z. Y., and Zhima, Z. (2016). Generation of magnetosonic waves over a continuous spectrum. J. Geophys. Res. :Space Phys., 121(2), 1137–1147. https://doi.org/10.1002/2015JA022089 |
Chen, L. J., and Bortnik, J. (2020). Wave-particle interactions with coherent magnetosonic waves. In A. N. Jaynes and M. E. Usanova (Eds. ) |
Fu, S., Ni, B. B., Li, J. X., Zhou, C., Gu, X. D., Huang, S. Y., Zhang, H., Ge, Y. S., and Cao, X. (2016). Interactions between magnetosonic waves and ring current protons: Gyroaveraged test particle simulations. J. Geophys. Res. :Space Phys., 121(9), 8537–8553. https://doi.org/10.1002/2016JA023117 |
Fu, S., Ni, B. B., Zhou, R. X., Cao, X., and Gu, X. D. (2019a). Combined scattering of radiation belt electrons caused by Landau and bounce resonant interactions with magnetosonic waves. Geophys. Res. Lett., 46(17-18), 10313–10321. https://doi.org/10.1029/2019GL084438 |
Fu, S., Ni, B. B., Tao, X., Ge, Y. S., Liu, J., Lou, Y. Q., Gu, X. D., Cao, X., Xiang, Z., … Zhang, Y. (2019b). Interactions between H+ band EMIC waves and radiation belt relativistic electrons: Comparisons of test particle simulations with quasi-linear calculations. Phys. Plasmas, 26(3), 032901. https://doi.org/10.1063/1.5054809 |
Fu, S., and Ge, Y. S. (2021). Acceleration of ring current protons driven by magnetosonic waves: Comparisons of test particle simulations with quasilinear calculations. Astrophys. J., 908(2), 203. https://doi.org/10.3847/1538-4357/abd2b3 |
Gao, X. L., Lu, Q. M., Wu, M. Y., and Wang, S. (2012). Ion stochastic heating by obliquely propagating magnetosonic waves. Phys. Plasmas, 19(6), 062111. https://doi.org/10.1063/1.4731707 |
Gao, X. L., Sun, J. C., Lu, Q. M., Chen, L. J., and Wang, S. (2018). Generation of lower harmonic magnetosonic waves through nonlinear wave-wave interactions. Geophys. Res. Lett., 45(16), 8029–8034. https://doi.org/10.1029/2018GL079090 |
Gary, S. P., Liu, K. J., and Winske, D. (2011). Bernstein instability driven by suprathermal protons in the ring current. J. Geophys. Res., 116(A8), A08215. https://doi.org/10.1029/2011JA016543 |
Gates, D. A., Gorelenkov, N. N., and White, R. B. (2001). Ion heating by fast-particle-induced Alfven turbulence. Phys. Rev. Lett., 87, 205003. https://doi.org/10.1103/PhysRevLett.87.205003 |
Guo, Z. H., Crabtree, C., and Chen, L. (2008). Theory of charged particle heating by low-frequency Alfvén waves. Phys. Plasmas, 15(3), 032311. https://doi.org/10.1063/1.2899326 |
Gurnett, D. A. (1976). Plasma wave interactions with energetic ions near the magnetic equator. J. Geophys. Res., 81(16), 2765–2770. https://doi.org/10.1029/JA081i016p02765 |
Horne, R. B., Thorne, R. M., Glauert, S. A., Meredith, N. P., Pokhotelov, D., and Santolık, O. (2007). Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys. Res. Lett., 34(17), L17107. https://doi.org/10.1029/2007GL030267 |
Kasahara, Y., Kenmochi, H., and Kimura, I. (1994). Propagation characteristics of the ELF emissions observed by the satellite Akebono in the magnetic equatorial region. Radio Sci., 29(4), 751–767. https://doi.org/10.1029/94RS00445 |
Laakso, H., Junginger, H., Roux, A., Schmidt, R., and de Villedary, C. (1990). Magnetosonic waves above f c (H+) at geostationary orbit—GEOS 2 results. J. Geophys. Res. :Space Phys., 95(A7), 10609–10621. https://doi.org/10.1029/JA095iA07p10609 |
Lei, M. D., Xie, L., Li, J. X., Pu, Z. Y., Fu, S., Ni, B. B., Hua M., Chen L. J., and Li, W. (2017). The radiation belt electron scattering by magnetosonic wave: Dependence on key parameters. J. Geophys. Res. :Space Phys., 122(12), 12338–12352. https://doi.org/10.1002/2016JA023801 |
Li, J. X., Ni, B. B., Xie, L., Pu, Z. Y., Bortnik, J., Thorne, R. M., Chen, L. J., Ma, Q. L., Fu, S. Y., … Guo, R. L. (2014). Interactions between magnetosonic waves and radiation belt electrons: Comparisons of quasi-linear calculations with test particle simulations. Geophys. Res. Lett., 41(14), 4828–4834. https://doi.org/10.1002/2014GL060461 |
Li, J. X., Ni, B. B., Ma, Q. L., Xie, L., Pu, Z. Y., Fu, S. Y., Thorne, R. M., Bortnik, J., Chen, L. J., … Summers, D. (2016). Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophys. Res. Lett., 43(7), 3009–3016. https://doi.org/10.1002/2016GL067853 |
Li, X. X., Tao, X., Lu, Q. M., and Dai, L. (2015). Bounce resonance diffusion coefficients for spatially confined waves. Geophys. Res. Lett., 42(22), 9591–9599. https://doi.org/10.1002/2015GL066324 |
Lichtenberg, A. J. , and Lieberman, M. A. (1992). Regular and Chaotic Dynamics (2nd ed, pp. 87-93). New York: Springer-Verlag. https://doi.org/10.1007/978-1-4757-2184-3222 |
Lu, Q. M., and Chen, L. (2009). Ion heating by a spectrum of obliquely propagating low-frequency Alfvén waves. Astrophys. J., 704(1), 743–749. https://doi.org/10.1088/0004-637X/704/1/743 |
Lyons, L. R., and Williams, D. J. (1984). Quantitative Aspects of Magnetospheric Physics. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-017-2819-5 |
Ma, Q. L., Li, W., Thorne, R. M., and Angelopoulos, V. (2013). Global distribution of equatorial magnetosonic waves observed by THEMIS. Geophys. Res. Lett., 40(10), 1895–1901. https://doi.org/10.1002/grl.50434 |
Ma, Q. L., Li, W., Chen, L. J., Thorne, R. M., and Angelopoulos, V. (2014). Magnetosonic wave excitation by ion ring distributions in the Earth’s inner magnetosphere. J. Geophys. Res. :Space Phys., 119(2), 844–852. https://doi.org/10.1002/2013JA019591 |
Ma, Q. L., Li, W., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., and Hospodarsky, G. B. (2016). Electron scattering by magnetosonic waves in the inner magnetosphere. J. Geophys. Res. :Space Phys., 121(1), 274–285. https://doi.org/10.1002/2015JA021992 |
Maldonado, A. A., Chen, L. J., Claudepierre, S. G., Bortnik, J., Thorne, R. M., and Spence, H. (2016). Electron butterfly distribution modulation by magnetosonic waves. Geophys. Res. Lett., 43(7), 3051–3059. https://doi.org/10.1002/2016GL068161 |
Maldonado, A. A., and Chen, L. J. (2018). On the diffusion rates of electron bounce resonant scattering by magnetosonic waves. Geophys. Res. Lett., 45(8), 3328–3337. https://doi.org/10.1002/2017GL076560 |
Meredith, N. P., Horne, R. B., and Anderson, R. R. (2008). Survey of magnetosonic waves and proton ring distributions in the Earth's inner magnetosphere. J. Geophys. Res., 113(A6), A06213. https://doi.org/10.1029/2007JA012975 |
Min, K., Němec, F., Liu, K. J., Denton, R. E., and Boardsen, S. A. (2019). Equatorial propagation of the magnetosonic mode across the plasmapause: 2-D PIC simulations. J. Geophys. Res. :Space Phys., 124(6), 4424–4444. https://doi.org/10.1029/2019JA026567 |
Ni, B. B., Zou, Z. Y., Fu, S., Cao, X., Gu, X. D., and Xiang, Z. (2018). Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves. Geophys. Res. Lett., 45(3), 1228–1236. https://doi.org/10.1002/2017GL075788 |
Perraut, S., Roux, A., Robert, P., Gendrin, R., Sauvaud, J. A., Bosqued, J. M., Kremser, G., and Korth, A. (1982). A systematic study of ULF waves above F H+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions. J. Geophys. Res., 87(A8), 6219–6236. https://doi.org/10.1029/JA087iA08p06219 |
Russell, C. T., Holzer, R. E., and Smith, E. J. (1970). OGO 3 observations of ELF noise in the magnetosphere 2. The nature of the equatorial noise. J. Geophys. Res., 75(4), 755–768. https://doi.org/10.1029/JA075i004p00755 |
Santolík, O., Pickett, J. S., Gurnett, D. A., Maksimovic, M., and Cornilleau-Wehrlin, N. (2002). Spatiotemporal variability and propagation of equatorial noise observed by Cluster. J. Geophys. Res., 107(A12), 1495. https://doi.org/10.1029/2001JA009159 |
Santolík, O., Němec, F., Gereová, K., Macúšová, E., de Conchy, Y., and Cornilleau-Wehrlin, N. (2004). Systematic analysis of equatorial noise below the lower hybrid frequency. Ann. Geophys., 22, 2587–2595. https://doi.org/10.5194/angeo-22-2587-2004 |
Schulz, M., and Lanzerotti, L. J. (1974). Particle Diffusion in the Radiation Belts. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-642-65675-0 |
Shprits, Y. Y. (2009). Potential waves for pitch-angle scattering of near-equatorially mirroring energetic electrons due to the violation of the second adiabatic invariant. Geophys. Res. Lett., 36(12), L12106. https://doi.org/10.1029/2009GL038322 |
Smith, G. R., and Kaufman, A. N. (1978). Stochastic acceleration by an obliquely propagating wave-An example of overlapping resonances. Phys. Fluids, 21(12), 2230–2241. https://doi.org/10.1063/1.862161 |
Sun, J. C., Gao, X. L., Chen, L. J., Lu, Q. M., Tao, X., and Wang, S. (2016a). A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory. Phys. Plasmas, 23(2), 022901. https://doi.org/10.1063/1.4941283 |
Sun, J. C., Gao, X. L., Lu, Q. M., Chen, L. J., Tao, X., and Wang, S. (2016b). A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations. Phys. Plasmas, 23(2), 022902. https://doi.org/10.1063/1.4941284 |
Sun, J. C., Chen, L. J., Wang, X. Y., Boardsen, S., Lin, Y., and Xia, Z. Y. (2020). Particle-in-cell simulation of rising-tone magnetosonic waves. Geophys. Res. Lett., 47(18), e2020GL089671. https://doi.org/10.1029/2020GL089671 |
Tao, X., Bortnik, J., Albert, J. M., and Thorne, R. M. (2012). Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. J. Geophys. Res., 117(A10), A10205. https://doi.org/10.1029/2012JA017931 |
Tao, X., and Li, X. (2016). Theoretical bounce resonance diffusion coefficient for waves generated near the equatorial plane. Geophys. Res. Lett., 43(14), 7389–7397. https://doi.org/10.1002/2016GL070139 |
Teng, S. C., Li, W., Tao, X., Ma, Q. L., and Shen, X. C. (2019). Characteristics and generation of low-frequency magnetosonic waves below the proton gyrofrequency. Geophys. Res. Lett., 46(21), 11652–11660. https://doi.org/10.1029/2019GL085372 |
Thorne, R. M. (2010). Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett., 37(22), L22107. https://doi.org/10.1029/2010GL044990 |
Tsurutani, B. T., Falkowski, B. J., Pickett, J. S., Verkhoglyadova, O. P., Santolik, O., and Lakhina, G. S. (2014). Extremely intense ELF magnetosonic waves: A survey of polar observations. J. Geophys. Res. :Space Phys., 119(2), 964–977. https://doi.org/10.1002/2013JA019284 |
Villalón, E., and Burke, W. J. (1987). Relativistic particle acceleration by obliquely propagating electromagnetic fields. Phys. Fluids, 30(12), 3695. https://doi.org/10.1063/1.866406 |
White, R., Chen, L., and Lin, Z. H. (2002). Resonant plasma heating below the cyclotron frequency. Phys. Plasmas, 9(5), 1890–1897. https://doi.org/10.1063/1.1445180 |
Xiao, F. L., Yang, C., Su, Z. P., Zhou, Q. H., He, Z. G., He, Y. H., Baker, D. N., Spence, H. E., Funsten, H. O., and Blake, J. B. (2015). Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat. Commun., 6(1), 8590. https://doi.org/10.1038/ncomms9590 |
Yu, J., Li, L. Y., Cui, J., Cao, J. B., and Wang, J. (2019a). Effect of low-harmonic magnetosonic waves on the radiation belt electrons inside the plasmasphere. J. Geophys. Res. :Space Phys., 124(5), 3390–3401. https://doi.org/10.1029/2018JA026328 |
Yu, J., Wang, J., and Cui, J. (2019b). Ring current proton scattering by low-frequency magnetosonic waves. Earth Planet. Phys., 3(4), 365–372. https://doi.org/10.26464/epp2019037 |
[1] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[2] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[3] |
ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics. doi: 10.26464/epp2022041 |
[4] |
YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015 |
[5] |
YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056 |
[6] |
LongHui Yuan, YuFeng Lin, Chris A. Jones, 2021: Influence of reference states on Jupiter’s dynamo simulations, Earth and Planetary Physics, 5, 305-313. doi: 10.26464/epp2021041 |
[7] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[8] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[9] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[10] |
Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040 |
[11] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[12] |
Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004 |
[13] |
Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047 |
[14] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[15] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[16] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[17] |
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039 |
[18] |
Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034 |
[19] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[20] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)