Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhou, P. C., Ellsworth, W. L., Yang, H. F., Tan, Y. J., Beroza, G. C., Sheng, M. H., and Chu, R. S. (2021). Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China. Earth Planet. Phys., 5(6), 501–519. http://doi.org/10.26464/epp2021053

2021, 5(6): 501-519. doi: 10.26464/epp2021053

SOLID EARTH: SEISMOLOGY

Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China

1. 

Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China

2. 

Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China

3. 

Department of Geophysics, Stanford University, Stanford, CA 94305, USA

4. 

State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

Corresponding author: HongFeng Yang, hyang@cuhk.edu.hk

Received Date: 2020-07-25
Web Publishing Date: 2021-11-15

Seismic hazard assessment and risk mitigation depend critically on rapid analysis and characterization of earthquake sequences. Increasing seismicity in shale gas blocks of the Sichuan Basin, China, has presented a serious challenge to monitoring and managing the seismicity itself. In this study, to detect events we apply a machine-learning-based phase picker (PhaseNet) to continuous seismic data collected between November 2015 and November 2016 from a temporary network covering the Weiyuan Shale Gas Blocks (SGB). Both P- and S-phases are picked and associated for location. We refine the velocity model by using detected explosions and earthquakes and then relocate the detected events using our new velocity model. Our detections and absolute relocations provide the basis for building a high-precision earthquake catalog. Our primary catalog contains about 60 times as many earthquakes as those in the catalog of the Chinese Earthquake Network Center (CENC), which used only the sparsely distributed permanent stations. We also measure the local magnitude and achieve magnitude completeness of ML0. We relocate clusters of events, showing sequential migration patterns overlapping with horizontal well branches around several well pads in the Wei202 and Wei204 blocks. Our results demonstrate the applicability of a machine-learning phase picker to a dense seismic network. The algorithms can facilitate rapid characterization of earthquake sequences.

Key words: induced seismicity; machine learning; Weiyuan Shale Gas Block

Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am., 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521

Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., … Kao, H. (2016). Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett., 87(3), 631–647. https://doi.org/10.1785/0220150263

Bao, X. W., and Eaton, D. W. (2016). Fault activation by hydraulic fracturing in western Canada. Science, 354(6318), 1406–1409. https://doi.org/10.1126/science.aag2583

Bergen, K. J., and Beroza, G. C. (2018). Detecting earthquakes over a seismic network using single-station similarity measures. Geophys. J. Int., 213(3), 1984–1998. https://doi.org/10.1093/gji/ggy100

Clarke, H., Eisner, L., Styles, P., and Turner, P. (2014). Felt seismicity associated with shale gas hydraulic fracturing: the first documented example in Europe. Geophys. Res. Lett., 41(23), 8308–8314. https://doi.org/10.1002/2014GL062047

Crotwell, H. P., Owens, T. J., and Ritsema, J. (1999). The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett., 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154

Dong, D. Z., Shi, Z. S., Guan, Q. Z., Jiang, S., Zhang, M. Q., Zhang, C. C., Wang, S. Y., Sun, S. S., Yu, R. Z., … Wang, S. Q. (2018). Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin. Nat. Gas Ind. B, 5(5), 415–424. https://doi.org/10.1016/j.ngib.2018.04.011

Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942

Ester, M. , Kriegel, H. P. , Sander J. , and Xu, X. W. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (pp. 226−231). Portland, Oregon: AAAI Press.222

Gibbons, S. J., and Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophys. J. Int., 165(1), 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x

Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S., and Dahm, T. (2017). Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Rev. Geophys., 55(2), 310–340. https://doi.org/10.1002/2016RG000542

Grigoli, F., Scarabello, L., Böse, M., Weber, B., Wiemer, S., and Clinton, J. F. (2018). Pick- and waveform-based techniques for real-time detection of induced seismicity. Geophys. J. Int., 213(2), 868–884. https://doi.org/10.1093/gji/ggy019

Holland, A. A. (2013). Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull. Seismol. Soc. Am., 103(3), 1784–1792. https://doi.org/10.1785/0120120109

INFOPETRO. (2016). Sinopec Weiyuan-Rongxian 3D seismic exploration project completed. http://www.cnpcjob.com/article/info.php?id=1889222

Johnson, C. E., Lindh, A. G., and Hirshorn, B. F. (1997). Robust regional phase association. U.S. Geol. Surv. Open-File Rept. 94–621. https://doi.org/doi:10.3133/ofr94621222

Johnson, C. E. (2020). Beyond earthworm: keeping the promise. Seismol. Res. Lett., 91(2A), 581–584. https://doi.org/10.1785/0220190198

Kao, H., and Shan, S. J. (2007). Rapid identification of earthquake rupture plane using source-scanning algorithm. Geophys. J. Int., 168(3), 1011–1020. https://doi.org/10.1111/j.1365-246X.2006.03271.x

Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U. (1994). Initial reference models in local earthquake tomography. J. Geophys. Res. :Solid Earth, 99(B10), 19635–19646. https://doi.org/10.1029/93JB03138

Kong, Q. K., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and Gerstoft, P. (2019). Machine learning in seismology: turning data into insights. Seismol. Res. Lett., 90(1), 3–14. https://doi.org/10.1785/0220180259

Langenbruch, C., Ellsworth, W. L., Woo, J. U., and Wald, D. J. (2020). Value at induced risk: injection-induced seismic risk from low-probability, high-impact events. Geophys. Res. Lett., 47(2), e2019GL085878. https://doi.org/10.1029/2019GL085878

Lee, K. K., Ellsworth, W. L., Giardini, D., Townend, J., Ge, S., Shimamoto, T., Yeo, I. W., Kang, T. S., Rhie, J., … Langenbruch, C. (2019). Managing injection-induced seismic risks. Science, 364(6442), 730–732. https://doi.org/10.1126/science.aax1878

Lee, W. H. K. , and Stewart, S. W. (1981). Principles and Applications of Microearthquake Networks. New York: Academic Press.222

Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H. (2017). Fault reactivation and earthquakes with magnitudes of up to M w4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Sci. Rep., 7(1), 7971. https://doi.org/10.1038/s41598-017-08557-y

Lei, X. L., Wang, Z. W., and Su, J. R. (2019). The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in south sichuan basin induced by shale gas hydraulic fracturing. Seismol. Res. Lett., 90(3), 1099–1110. https://doi.org/10.1785/0220190029

Liang, X., Liu, S. G., Wang, S. B., Deng, B., Zhou, S. Y., and Ma, W. X. (2019). Analysis of the Oldest Carbonate Gas Reservoir in China-New Geological Significance of the Dengying Gas Reservoir in the Weiyuan Structure, Sichuan Basin. Journal of Earth Science, 30(2), 348–366. https://doi.org/10.1007/s12583-017-0962-y

Liu, M., Zhang, M., Zhu, W. Q., Ellsworth, W. L., and Li, H. Y. (2020). Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine learning phase picker. Geophys. Res. Lett., 47, e2019GL086189. https://doi.org/10.1029/2019GL086189

Meng, L. Y., McGarr, A., Zhou, L. Q., and Zang, Y. (2019). An investigation of seismicity induced by hydraulic fracturing in the sichuan basin of China based on data from a temporary seismic network. Bull. Seismol. Soc. Am., 109(1), 348–357. https://doi.org/10.1785/0120180310

Meng, X. B., Chen, H. C., Niu, F. L., Tang, Y. C., Yin, C., and Wu, F. R. (2018). Microseismic monitoring of stimulating shale gas reservoir in SW China: 1. An improved matching and locating technique for downhole monitoring. J. Geophys. Res.:Solid Earth, 123(2), 1643–1658. https://doi.org/10.1002/2017JB014488

Mignan, A., and Woessner, J. (2012). Estimating the magnitude of completeness for earthquake catalogs. Community Online Resour. Stat. Seism. Anal., 1–45. https://doi.org/10.5078/corssa-00180805

Mignan, A., Danciu, L., and Giardini, D. (2018). Considering large earthquake clustering in seismic risk analysis. Nat. Hazards, 91(1), 149–172. https://doi.org/10.1007/s11069-016-2549-9

Mousavi, S. M., Sheng, Y. X., Zhu, W. Q., and Beroza, G. C. (2019a). Stanford EArthquake dataset (STEAD): a global data set of seismic signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848

Mousavi, S. M., Zhu, W. Q., Sheng, Y. X., and Beroza, G. C. (2019b). CRED: a deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep., 9(1), 10267. https://doi.org/10.1038/s41598-019-45748-1

Park, Y., Mousavi, S. M., Zhu, W. Q., Ellsworth, W. L., and Beroza, G. C. (2020). Machine-learning-based analysis of the guy-greenbrier, arkansas earthquakes: a tale of two sequences. Geophys. Res. Lett., 47(6), e2020GL087032. https://doi.org/10.1029/2020GL087032

Peng, Z. G., and Zhao, P. (2009). Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci., 2(12), 877–881. https://doi.org/10.1038/ngeo697

Richter, C. F. (1958). Elementary Seismology. San Francisco: W. H. Freeman.222

Ross, Z. E., Meier, M. A., and Hauksson, E. (2018). P wave arrival picking and first-motion polarity determination with deep learning. J. Geophys. Res. :Solid Earth, 123(6), 5120–5129. https://doi.org/10.1029/2017JB015251

Ross, Z. E., Yue, Y. S., Meier, M. A., Hauksson, E., and Heaton, T. H. (2019). PhaseLink: a deep learning approach to seismic phase association. J. Geophys. Res. :Solid Earth, 124(1), 856–869. https://doi.org/10.1029/2018JB016674

Rubin, A. M., Gillard, D., and Got, J. L. (1999). Streaks of microearthquakes along creeping faults. Nature, 400(6745), 635–641. https://doi.org/10.1038/23196

Safety and Environmental Protection Technology Research Institute of CNPC, and Beijing CNPC Construction Project Labor Safety and Health Pre Evaluation Co., Ltd. (2015). Environmental impact statement of CNPC Changning, Weiyuan, and Zhaotong shale gas construction project (in Chinese). Beijing: Safety and Environmental Protection Technology Research Institute of CNPC, Beijing CNPC Construction Project Labor Safety and Health Pre Evaluation Co., Ltd.222

Schoenball, M., and Ellsworth, W. L. (2017). A systematic assessment of the spatiotemporal evolution of fault activation through induced seismicity in Oklahoma and Southern Kansas. J. Geophys. Res. :Solid Earth, 122(12), 10189–10206. https://doi.org/10.1002/2017JB014850

Schoenball, M., Walsh, F. R., Weingarten, M., and Ellsworth, W. L. (2018). How faults wake up: the Guthrie-Langston, Oklahoma earthquakes. Lead. Edge, 37(2), 100–106. https://doi.org/10.1190/tle37020100.1

Schultz, R., Beroza, G., Ellsworth, W., and Baker, J. (2020). Risk-informed recommendations for managing hydraulic fracturing-induced seismicity via traffic light protocols. Bull. Seismol. Soc. Am., 110(5), 2411–2422. https://doi.org/10.1785/0120200016

Shelly, D. R., Ellsworth, W. L., and Hill, D. P. (2016). Fluid-faulting evolution in high definition: connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. J. Geophys. Res. :Solid Earth, 121(3), 1776–1795. https://doi.org/10.1002/2015JB012719

Sheng, M. H., Chu, R. S., Ni, S. D., Wang, Y., Jiang, L. M., and Yang, H. F. (2020). Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing. J. Geophys. Res. :Solid Earth, 125(10), e2020JB019932. https://doi.org/10.1029/2020JB019932

Skoumal, R. J., Brudzinski, M. R., and Currie, B. S. (2015). Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull. Seismol. Soc. Am., 105(1), 189–197. https://doi.org/10.1785/0120140168

Stewart, S. W. (1977). Real-time detection and location of local seismic events in central California. Bull. Seismol. Soc. Am., 67(2), 433–452. https://doi.org/10.1785/BSSA0670020433

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W. Q., Michele, M., Chiaraluce, L., Beroza, G. C., and Segou, M. (2021). Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016-2017 central Italy sequence. Seismic Rec., 1(1), 11–19. https://doi.org/10.1785/0320210001

Waldhauser, F., and Ellsworth, W. L. (2002). Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations. J. Geophys. Res. :Solid Earth, 107(B3), ESE3–1-ESE3-15. https://doi.org/10.1029/2000JB000084

Walsh III, F. R., and Zoback, M. D. (2016). Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA. Geology, 44(12), 991–994. https://doi.org/10.1130/G38275.1

Wang, J., Xiao, Z. W., Liu, C., Zhao, D. P., and Yao, Z. X. (2019). Deep learning for picking seismic arrival times. J. Geophys. Res. :Solid Earth, 124(7), 6612–6624. https://doi.org/10.1029/2019JB017536

Wang, M. M., Yang, H. F., Fang, L. H., Han, L. B., Jia, D., Jiang, D. Q., and Yan, B. (2020). Shallow faults reactivated by hydraulic fracturing: the 2019 Weiyuan earthquake sequences in Sichuan, China. Seismol. Res. Lett., 91(6), 3171–3181. https://doi.org/10.1785/0220200174

Wang, R. J., Schmandt, B., Zhang, M., Glasgow, M., Kiser, E., Rysanek, S., and Stairs, R. (2020). Injection-induced earthquakes on complex fault zones of the Raton Basin illuminated by machine-learning phase picker and dense nodal array. Geophys. Res. Lett., 47(14), e2020GL088168. https://doi.org/10.1029/2020GL088168

Wang, X., Ma, S. L., Guo, Z., Lei, X. L., Xia, Y. J., Guo, X., Yu, G. Z., Gou, X. B., and Jiang, X. D. (2013). S-wave velocity of the crust in Three Gorges Reservoir and the adjacent region inverted from seismic ambient noise tomography. Chin. J. Geophys., 56(12), 4113–4124. https://doi.org/10.6038/cjg20131216

Wiemer, S., and Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am., 90(4), 859–869. https://doi.org/10.1785/0119990114

Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373

Wong, W. C. J. , Zi, J. P., Yang, H. F., and Su, J. R. (2021). Spatial-temporal evolution of injection induced earthquakes in weiyuan area by machine-learning phase picker and waveform cross-correlation. Earth Planet. Phys., 5(6), 485–500. https://doi.org/10.26464/epp2021055

Wu, X., Xia, J., Guan, B. S., Yan, X. M., Zou, L., Liu, P., Yang, L. F., Hong, S., and Hu, S. (2019). Water availability assessment of shale gas production in the Weiyuan play, China. Sustainability, 11(3), 940. https://doi.org/10.3390/su11030940

Xu, W. B., Dutta, R., and Jónsson, S. (2015). Identifying active faults by improving earthquake locations with InSAR data and Bayesian estimation: the 2004 Tabuk (Saudi Arabia) earthquake sequence. Bull. Seismol. Soc. Am., 105(2A), 765–775. https://doi.org/10.1785/0120140289

Yang, H. F., Zhu, L. P., and Chu, R. S. (2009). Fault-plane determination of the 18 April 2008 mount Carmel, Illinois, earthquake by detecting and relocating aftershocks. Bull. Seismol. Soc. Am., 99(6), 3413–3420. https://doi.org/10.1785/0120090038

Yang, H. F. (2015). Recent advances in imaging crustal fault zones: a review. Earthq. Sci., 28(2), 151–162. https://doi.org/10.1007/s11589-015-0114-3

Yang, H. F., Liu, Y. J., Wei, M., Zhuang, J. C., and Zhou, S. Y. (2017). Induced earthquakes in the development of unconventional energy resources. Sci. China Earth Sci., 60(9), 1632–1644. https://doi.org/10.1007/s11430-017-9063-0

Yang, H. F., Zhou, P. C., Fang, N., Zhu, G. H., Xu, W. B., Su, J. R., Meng, F. B., and Chu, R. S. (2020). A shallow shock: the 25 February 2019 ML 4.9 earthquake in the Weiyuan shale gas field in Sichuan, China. Seismol. Res. Lett., 91(6), 3182–3194. https://doi.org/10.1785/0220200202

Yoon, C. E., O’Reilly, O., Bergen, K. J., and Beroza, G. C. (2015). Earthquake detection through computationally efficient similarity search. Sci. Adv., 1(11), e1501057. https://doi.org/10.1126/sciadv.1501057

Yoon, C. E., Bergen, K. J., Rong, K. X., Elezabi, H., Ellsworth, W. L., Beroza, G. C., Bailis, P., and Levis, P. (2019). Unsupervised large-scale search for similar earthquake signals. Bull. Seismol. Soc. Am., 109(4), 1451–1468. https://doi.org/10.1785/0120190006

Yu, H., Harrington, R. M., Liu, Y., and Wang, B. (2019). Induced seismicity driven by fluid diffusion revealed by a near-field hydraulic stimulation monitoring array in the Montney Basin, British Columbia. J. Geophys. Res. :Solid Earth, 124(5), 4694–4709. https://doi.org/10.1029/2018JB017039

Zeng, Q., Chu, R. S., Sheng, M. H., and Wei, Z. G. (2020). Seismic ambient noise tomography for shallow velocity structures beneath Weiyuan, Sichuan. Chin. J. Geophys., 63(3), 944–955. https://doi.org/10.6038/cjg2020N0177

Zhang, M., and Wen, L. X. (2015). An effective method for small event detection: match and locate (M&L). Geophys. J. Int., 200(3), 1523–1537. https://doi.org/10.1093/gji/ggu466

Zhang, M., Ellsworth, W. L., and Beroza, G. C. (2019). Rapid earthquake association and location. Seismol. Res. Lett., 90(6), 2276–2284. https://doi.org/10.1785/0220190052

Zhao, Z., Fan, J., Zheng, S. H., Hasegawa, A., and Horiuchi, S. (1997). Crustal structure and accurate hypocenter determination along the Longmenshan fault zone. Acta Seismol. Sin., 10, 761–768. https://doi.org/10.1007/s11589-997-0008-0

Zhou, P. C., Yang, H. F., Wang, B. S., and Zhuang, J. C. (2019). Seismological investigations of induced earthquakes near the hutubi underground gas storage facility. J. Geophys. Res. :Solid Earth, 124(8), 8753–8770. https://doi.org/10.1029/2019JB017360

Zhu, L. P., and Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bull. Seismol. Soc. Am., 86(5), 1634–1641. https://doi.org/10.1785/BSSA0860051634

Zhu, W. Q., and Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int., 216(1), 261–273. https://doi.org/10.1093/gji/ggy423

[1]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055

[2]

Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026

[3]

Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034

[4]

SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056

[5]

HongFeng Yang, XiaoWei Chen, Rebecca Harrington, YaJing Liu, 2021: Preface to the special collection of Induced Earthquakes, Earth and Planetary Physics, 5, 483-484. doi: 10.26464/epp2021057

[6]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

[7]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics. doi: 10.26464/epp2022002

[8]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[9]

Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Maduo earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics. doi: 10.26464/epp2022007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China

PengCheng Zhou, William L. Ellsworth, HongFeng Yang, Yen Joe Tan, Gregory C. Beroza, MinHan Sheng, RiSheng Chu