Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhang, B. L., Ni, S. D., and Chen, Y. L. (2019). Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys., 3(6), 537–546.doi: 10.26464/epp2019055

2019, 3(6): 537-546. doi: 10.26464/epp2019055

SOLID EARTH: SEISMOLOGY

Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances

State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China

Corresponding author: SiDao Ni, sdni@whigg.ac.cn

Received Date: 2019-09-22
Web Publishing Date: 2019-11-01

The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection. Because intrinsic attenuation in the lower mantle is highly sensitive to temperature, determining of the attenuation of the lower mantle could help us determine its thermal state. We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China. We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM, as well as by considering the effects of radiation patterns, geometrical spreading, and ScP reflection coefficients. By comparing the observed amplitude ratios with the synthetic results, we constrained the quality factors as Qα ≈ 3,000 and Qβ ≈ 1,300 in the lower mantle beneath Northeast China, which are much larger than those in the preliminary reference Earth model (PREM) model of Qα ~800 and Qβ ~312. We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle, resulting in weaker intrinsic attenuation and higher velocity. We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.

Key words: seismic attenuation, lower mantle, Northeast China, reflected core phases, thermal state

Ai, Y. S., Zheng, T. Y., Xu, W. W., He, Y. M., and Dong, D. (2003). A complex 660 km discontinuity beneath northeast China. Earth Planet. Sci. Lett., 212(1-2), 63–71. https://doi.org/10.1016/S0012-821X(03)00266-8

Anderson, D. L., Ben-Menahem, A., and Archambeau, C. B. (1965). Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70(6), 1441–1448. https://doi.org/10.1029/jz070i006p01441

Anderson, D. L., and Hart, R. S. (1978a). Attenuation models of the earth. Phys. Earth Planet. Inter., 16(4), 289–306. https://doi.org/10.1016/0031-9201(78)90068-7

Anderson, D. L., and Hart, R. S. (1978b). Q of the Earth. J. Geophys. Res., 83(B12), 5869–5882. https://doi.org/10.1029/JB083iB12p05869

Anderson, D. L., and Kovach, R. L. (1964). Attenuation in the mantle and rigidity of the core from multiply reflected core phases. Proc. Natl. Acad. Sci. USA, 51(2), 168–172. https://doi.org/10.1073/pnas.51.2.168

Avants, M., Lay, T., and Garnero, E. J. (2006). A new probe of ULVZ S-wave velocity stucture: Array stacking of ScS waveforms. Geophys. Res. Lett., 33(7), 2–5. https://doi.org/10.1029/2005GL024989

Bentham, H. L. M., Rost, S., and Thorne, M. S. (2017). Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors. Earth Planet. Sci. Lett., 472, 164–173. https://doi.org/10.1016/j.jpgl.2017.05.027

Burdick, L. J. (1985). Estimation of the frequency dependence of Q from ScP and ScS phases. Geophys. J. R. Astron. Soc., 80(1), 35–55. https://doi.org/10.1111/j.1365-246X.1985.tb05077.x

Data Management Centre of China National Seismic Network. (2007). Waveform data of China National Seismic Network. Institute of Geophysics, China Earthquake Administration. https://doi.org/10.11998/SeisDmc/SN, http://www.seisdmc.ac.cn222

Durand, S., Debayle, E., Ricard, Y., and Lambotte, S. (2016). Seismic evidence for a change in the large-scale tomographic pattern across the D′′ layer. Geophys. Res. Lett., 43(15), 7928–7936. https://doi.org/10.1002/2016GL069650

Durand, S., Matas, J., Ford, S., Ricard, Y., Romanowicz, B., and Montagner, J. P. (2013). Insights from ScS-S measurements on deep mantle attenuation. Earth Planet. Sci. Lett., 374, 101–110. https://doi.org/10.1016/j.jpgl.2013.05.026

Durek, J. J., and Ekström, G. (1996). A radial model of anelasticity consistent with long-period surface-wave attenuation. Bull. Seismol. Soc. Am., 86(1A), 144–158.

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

Dziewonski, A. M., Forte, A. M., Su, W. J., Woodward, R. L., (1993). Seismic Tomography and Geodynamics. In Relating Geophysical Structures and Processes. (pp. 67–105). Washington, D.C.: American Geophysical Union.222

Ekström, G., Nettles, M., and Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

French, S. W., and Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95–99. https://doi.org/10.1038/nature14876

Garnero, E. J., and Vidale, J. E. (1999). ScP; a probe of ultralow velocity zones at the base of the mantle. Geophys. Res. Lett., 26(3), 377–380. https://doi.org/10.1029/1998GL900319

Grand, S. P., Chen Y., Kawakatsu, H., Chen, Q., Ni, J., Niu, F., Obayashi, M., and Tanaka S. (2006). NorthEast China Extended SeiSmic Array (NECESSArray): Deep subduction, mantle dynamics and continental evolution beneath northeast China, Eos Trans. AGU, 87(36), Western Pac. Geophys. Meet. Suppl., Abstract S41B-03.222

Gutenberg, B. (1958). Attenuation of seismic waves in the earth’s mantle. Bull. Seismol. Soc. Am., 48, 269–282.

He, Y. M., Wen, L. X., Zheng, T. Y. (2006). Geographic boundary and shear wave velocity structure of the " Pacific anomaly” near the core-Mantle boundary beneath western Pacific. Earth Planet. Sci. Lett., 244(1-2), 302–314. https://doi.org/10.1016/j.jpgl.2006.02.007

Houser, C. (2007). Constraints on the presence or absence of post-perovskite in the lowermost mantle from long-period seismology. In K. Hirose, et al. (Eds.), PostPerovskite: The Last Mantle Phase Transition (Vol. 174, pp. 1-27). Washington, DC: American Geophysical Union222

Houser, C., Masters, G., Shearer, P., and Laske, G. (2008). Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int., 174(1), 195–212. https://doi.org/10.1111/j.1365-246X.2008.03763.x

Hwang, Y. K., and Ritsema, J. (2011). Radial Qμ structure of the lower mantle from teleseismic body-wave spectra. Earth Planet. Sci. Lett., 303(3-4), 369–375. https://doi.org/10.1016/j.jpgl.2011.01.023

Idehara, K., Yamada, A., and Zhao, D. P. (2007). Seismological constraints on the ultralow velocity zones in the lowermost mantle from core-reflected waves. Phys. Earth Planet. Inter., 165(1-2), 25–46. https://doi.org/10.1016/j.pepi.2007.07.005

Kanamori, H. (1967a). Spectrum of short-period core phases in relation to the attenuation in the mantle. J. Geophys. Res., 72(8), 2181–2186. https://doi.org/10.1029/JZ072i008p02181

Kanamori, H. (1967b). Spectrum of P and PcP in relation to the mantle-core boundary and attenuation in the mantle. J. Geophys. Res., 72(2), 559–571. https://doi.org/10.1029/jz072i002p00559

Karato, S., and Spetzler, H. A. (1990). Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys., 28(4), 399–421. https://doi.org/10.1029/RG028i004p00399

Koelemeijer, P., Schuberth, B. S. A., Davies, D. R., Deuss, A., and Ritsema, J. (2018). Constraints on the presence of post-perovskite in Earth ’ s lowermost mantle from tomographic-geodynamic model comparisons. Earth Planet. Sci. Lett., 494, 226–238. https://doi.org/10.1016/j.jpgl.2018.04.056

Lawrence, J. F., and Wysession, M. E. (2006). QLM9: A new radial quality factor (Qμ) model for the lower mantle. Earth Planet. Sci. Lett., 241(3-4), 962–971. https://doi.org/10.1016/j.jpgl.2005.10.030

Li, C., van der Hilst, R. D., Engdahl, E. R., and Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochem., Geophys. Geosyst., 9(5), Q05018. https://doi.org/10.1029/2007GC001806

Li, J., Wang, X., Wang, X. J., and Yuen, D. A. (2013). P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone. Earth Planet. Sci. Lett., 367, 71–81. https://doi.org/10.1016/j.jpgl.2013.02.026

Liu, C. J., and Grand, S. P. (2018). Seismic attenuation in the African LLSVP estimated from PcS phases. Earth Planet. Sci. Lett., 489, 8–16. https://doi.org/10.1016/j.jpgl.2018.02.023

Mancinelli, N., Shearer, P., and Thomas, C. (2016). On the frequency dependence and spatial coherence of PKP precursor amplitudes. J. Geophys. Res., 121(3), 1873–1889. https://doi.org/10.1002/2015JB012768

Mancinelli, N. J., and Shearer, P. M. (2013). Reconciling discrepancies among estimates of small-scale mantle heterogeneity from PKP precursors. Geophys. J. Int., 195(3), 1721–1729. https://doi.org/10.1093/gji/ggt319

Margerin, L., and Nolet, G. (2003). Multiple scattering of high-frequency seismic waves in the deep Earth: PKP precursor analysis and inversion for mantle granularity. J. Geophys. Res., 108(B11), 2514. https://doi.org/10.1029/2003JB002455

Matas, J., and Bukowinski, M. S. T. (2007). On the anelastic contribution to the temperature dependence of lower mantle seismic velocities. Earth Planet. Sci. Lett., 259(1-2), 51–65. https://doi.org/10.1016/j.jpgl.2007.04.028

Mosca, I., Cobden, L., Deuss, A., Ritsema, J., and Trampert, J. (2012). Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J. Geophys. Res., 117(B6), 1–26. https://doi.org/10.1029/2011JB008851

Nissen-Meyer, T., Van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., and Fournier, A. (2014). AxiSEM: Broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1), 425–445. https://doi.org/10.5194/se-5-425-2014

Niu, F. L. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray. Earth Planet. Sci. Lett., 402, 305–312. https://doi.org/10.1016/j.jpgl.2013.02.015

Okal, E. A., and Jo, B. G. (1990). Q measurements for phase X overtones. Pure Appl. Geophys., 132(1-2), 331–362. https://doi.org/10.1007/BF00874369

Persh, S. E., Vidale, J. E., and Earle, P. S. (2001). Absence of short-period ULVZ precursors to PcP and ScP from two regions of the CMB. Geophys. Res. Lett., 28(2), 387–390. https://doi.org/10.1029/2000GL011607

Press, F. (1956). Rigidity of the Earth’s Core. Science., 124(3233), 1204. https://doi.org/10.1126/science.124.3233.1204

Ranasinghe, N. R., Gallegos, A. C., Trujillo, A. R., Blanchette, A. R., Sandvol, E. A., Ni, J., Hearn, T. M., Tang, Y. C., Grand, S. P., … Obayashi, M. (2015). Lg attenuation in northeast China using NECESSArray data. Geophys. J. Int., 200(1), 67–76. https://doi.org/10.1093/gji/ggu375

Revenaugh, J., and Meyer, R. (1997). Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science., 277(5326), 670–673. https://doi.org/10.1126/science.277.5326.670

Ritsema, J., Deuss, A., Van Heijst, H. J., and Woodhouse, J. H. (2011). S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

Rost, S., and Revenaugh, J. (2001). Seismic detection of rigid zones at the top of the core. Science., 294(5548), 1911–4. https://doi.org/10.1126/science.1065617

Rost, S., and Revenaugh, J. (2003). Small-scale ultralow-velocity zone structure imaged by ScP. J. Geophys. Res., 108(B1), 2056. https://doi.org/10.1029/2001JB001627

Schlittenhardt, J. (1986). Investigation of the velocity- and Q-structure of the lowermost mantle using PcP/P amplitude ratios from arrays at distances of 70°–84°. J. Geophys., 60, 1–18.

Shearer, P. M. (2009). Introduction to Seismology (2nd ed). Cambridge: Cambridge University Press.222

Shearer, P. M., and Earle, P. S. (2004). The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158(3), 1103–1117. https://doi.org/10.1111/j.1365-246X.2004.02378.x

Shen, Z. C., Ni, S. D., Wu, W. B., and Sun, D. Y. (2016). Short period ScP phase amplitude calculations for core-mantle boundary with intermediate scale topography. Phys. Earth Planet. Inter., 253, 64–73. https://doi.org/10.1016/j.pepi.2016.02.002

Simmons, N. A., Myers, S. C., Johannesson, G., and Matzel, E. (2012). LLNL-G3Dv3: Global P-wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res., 117(B10), B10302. https://doi.org/10.1029/2012JB009525

Sun, X. L., Song, X. D., Zheng, S. H., and Helmberger, D. V. (2007). Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America. Proc. Natl. Acad. Sci. U S.A., 104(1), 26–30. https://doi.org/10.1073/pnas.0609143103

Trampert, J., Deschamps, F., Resovsky, J., and Yuen, D. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306(5697), 853–856. https://doi.org/10.1126/science.1101996

Vidale, J. E., and Benz, H. M. (1992). A sharp and flat section of the core-mantle boundary. Nature, 359(6596), 627–629. https://doi.org/10.1038/359627a0

Waszek, L., Thomas, C., and Deuss, A. (2015). PKP precursors: Implications for global scatterers. Geophys. Res. Lett., 42(10), 3829–3838. https://doi.org/10.1002/2015GL063869

Widmer, R., Masters, G., and Gilbert, F. (1991). Spherically symmetric attenuation within the Earth from normal mode data. Geophys. J. Int., 104(3), 541–553. https://doi.org/10.1111/j.1365-246X.1991.tb05700.x

Xu, Y., and Koper, K. D. (2009). Detection of a ULVZ at the base of the mantle beneath the northwest Pacific. Geophys. Res. Lett., 36(17), 1–5. https://doi.org/10.1029/2009GL039387

Ye, L. L., Li, J., Tseng, T. L., and Yao, Z. X. (2011). A stagnant slab in a water-bearing mantle transition zone beneath northeast China: Implications from regional SH waveform modelling. Geophys. J. Int., 186(2), 706–710. https://doi.org/10.1111/j.1365-246X.2011.05063.x

Yoshida, M., and Tsujiura, M. (1975). Spectrum and attenuation of multiply reflected core phases. J. Phys. Earth., 23, 31–42. https://doi.org/10.4294/jpe1952.23.31

Zhang, B. L., Ni, S. D., and Sun, D. Y. (2019). Seismological constraints on the small-scale heterogeneity in the lowermost mantle beneath east asia and implication for its mineralogical origin. Geophys. Res. Lett., 46(10), 5225–5233. https://doi.org/10.1029/2019GL082296

Zhang, B. L., Ni, S. D., Sun, D. Y., Shen, Z. C., Jackson, J. M., and Wu, W. B. (2018). Constraints on small-scale heterogeneity in the lowermost mantle from observations of near podal PcP precursors. Earth Planet. Sci. Lett., 489, 267–276. https://doi.org/10.1016/j.jpgl.2018.01.033

Zhao, L. F., Xie, X. B., Tian, B. F., Chen, Q. F., Hao, T. Y., and Yao, Z. X. (2015). Pn wave geometrical spreading and attenuation in Northeast China and the Korean Peninsula constrained by observations from North Korean nuclear explosions. J. Geophys. Res., 120(11), 7558–7571. https://doi.org/10.1002/2015JB012205

Zhao, L. F., Xie, X. B., Wang, W. M., Zhang, J. H., and Yao, Z. X. (2013). Crustal Lg attenuation within the North China Craton and its surrounding regions. Geophys. J. Int., 195(1), 513–531. https://doi.org/10.1093/gji/ggt235

Zheng, X. F., Yao, Z. X., Liang, J. J., and Zheng, J. (2010). The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull. Seismol. Soc. Amer., 100(5B), 2866–2872. https://doi.org/10.1785/0120090257

[1]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[2]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[3]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[4]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[5]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[6]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[7]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[8]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[9]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[10]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[11]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[12]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[13]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[14]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[15]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[16]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[17]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[18]

YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015

[19]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[20]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances

BaoLong Zhang, SiDao Ni, YuLin Chen