Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Du, H. L., Cao, X., Ni, B. B., Fu, S., Ma, X., Yun, X. T., Long, M. Y., and Luo, Q. (2023). Distribution of O+ and O2 + fluxes and their escape rates in the near-Mars magnetotail: A survey of MAVEN observations. Earth Planet. Phys., 7(1), 1–10. http://doi.org/10.26464/epp2023002

doi: 10.26464/epp2023002

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Distribution of O+ and ${\text{O}}_{\text{2}}^{\text{+}}$ fluxes and their escape rates in the near-Mars magnetotail: A survey of MAVEN observations

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, Hefei 230026, China

Key points:
  • Planetary heavy ions (oxygen ions and molecular oxygen ions) in the Martian magnetotail are dominant in the tailward direction.
  • Tailward heavy ion fluxes are larger in the −E (electric field) hemisphere than in the +E hemisphere.
  • The escape rates of heavy ions are closely related with CIR and solar wind dynamic pressure.

Corresponding author: Xing Cao, cxing@whu.edu.cnBinBin Ni, bbni@whu.edu.cn

Received Date: 2022-06-24
Web Publishing Date: 2022-09-16

Tailward ion outflows in the Martian-induced magnetotail are known to be one of the major channels for Martian atmospheric escape. On the basis of nearly 6.5 years of observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we investigate the statistical distribution of tailward and Marsward fluxes of heavy ions (i.e., O+ and ${\rm{O}}_2^+ $) in the near-Mars magnetotail and explore their characteristic responses to the corotating interaction region (CIR), solar wind dynamic pressure, and local magnetic field intensity. Our results show that the tailward fluxes of oxygen ions and molecular oxygen ions in the magnetotail are significantly greater than their Marsward fluxes and that the tailward flux of molecular oxygen ions is generally larger than that of oxygen ions. Furthermore, the tailward ion flux distribution exhibits dependence on the CIR, solar wind dynamic pressure, and local magnetic field strength in a manner stronger than the Marsward ion flux distribution. According to the distribution of tailward ion fluxes, we calculate the corresponding escape rates of heavy ions and show that when the CIR occurs, the total escape rates of oxygen ions and molecular oxygen ions increase by a factor of ~2 and ~1.2, respectively. We also find that the escape rates of heavy ions increase with the enhancement of solar wind dynamic pressure, whereas the overall effect of the local magnetic field is relatively weak. Our study has important implications for improved understanding of the underlying mechanisms responsible for the Martian atmospheric escape and the evolution of the Martian atmospheric climate.

Key words: Martian-induced magnetotail, atmospheric heavy ion outflow, corotating interaction region, escape rate

Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J. A. (2007). Martian atmospheric erosion rates. Science, 315(5811), 501–503. https://doi.org/10.1126/science.1134358

Bibring, J. P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., … Neukum, G. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science, 312(5772), 400–404. https://doi.org/10.1126/science.1122659

Brain, D. A., Baker, A. H., Briggs, J., Eastwood, J. P., Halekas, J. S., and Phan, T. D. (2010). Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophys. Res. Lett., 37(14), L14108. https://doi.org/10.1029/2010GL043916

Brain, D. A., Bagenal, F., Ma, Y. J., Nilsson, H., and Stenberg Wieser, G. (2016). Atmospheric escape from unmagnetized bodies. J. Geophys. Res.:Planets, 121(12), 2364–2385. https://doi.org/10.1002/2016JE005162

Cao, Y. T., Cui, J., Wu, X. S., and Zhong, J. H. (2020). Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity. Earth Planet. Phys., 4(1), 17–22. https://doi.org/10.26464/epp2020008

Carlsson, E., Fedorov, A., Barabash, S., Budnik, E., Grigoriev, A., Gunell, H., Sauvaud, J. A., Lundin, R., Futaana, Y., … Dierker, C. (2006). Mass composition of the escaping plasma at Mars. Icarus, 182(2), 320–328. https://doi.org/10.1016/j.icarus.2005.09.020

Chassefière, E., and Leblanc, F. (2004). Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci., 52(11), 1039–1058. https://doi.org/10.1016/j.pss.2004.07.002

Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Kletetschka, G., Ness, N. F., Rème, H., Lin, R. P., and Mitchell, D. L. (2001). The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett., 28(21), 4015–4018. https://doi.org/10.1029/2001GL013619

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1–4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Cui, J., Gu, H., and Huang, X. (2022). Present-day atomic hydrogen escape on Mars and its variability. Sci. Sin.: Phys., Mech. Astrono., 52(3), 239502. https://doi.org/10.1360/SSPMA-2021-0290

Cui, J., Rong, Z. J., Wei, Y., and Wang, Y. M. (2020). Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China. Earth Planet. Phys., 4(1), 1–3. https://doi.org/10.26464/epp2020001

Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., Curry, S. M., Harada, Y., Luhmann, J. G., and Jakosky B. M. (2015). Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel. Geophys. Res. Lett., 42(21), 8942–8950. https://doi.org/10.1002/2015GL065346

Dubinin, E., Fraenz, M., Woch, J., Duru, F., Gurnett, D., Modolo, R., Barabash, S., and Lundin, R. (2009). Ionospheric storms on Mars: impact of the corotating interaction region. Geophys. Res. Lett., 36(1), L01105. https://doi.org/10.1029/2008GL036559

Dubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., DiBraccio, G. A., Connerney, J. E. P., Eparvier, F., Brain, D., … Zelenyi, L. (2017). The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res.:Space Phys., 122(11), 11285–11301. https://doi.org/10.1002/2017JA024741

Dubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., Connerney, J. E. P., Jakosky, B. M., Vaisberg, O., and Zelenyi, L. (2018). Martian ionosphere observed by MAVEN. 3. Influence of solar wind and IMF on upper ionosphere. Planet. Space Sci., 160, 56–65. https://doi.org/10.1016/j.pss.2018.03.016

Edberg, N. J. T., Nilsson, H., Williams, A. O., Lester, M., Milan, S. E., Cowley, S. W. H., Fränz, M., Barabash, S., and Futaana, Y. (2010). Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett., 37(3), L03107. https://doi.org/10.1029/2009GL041814

Fang, X. H., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. J. (2010). On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus, 206(1), 130–138. https://doi.org/10.1016/j.icarus.2009.01.012

Fang, X. H., Ma, Y. J., Brain, D., Dong, Y. X., and Lillis, R. (2015). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: a time-dependent MHD study. J. Geophys. Res.:Space Phys., 120(12), 10926–10944. https://doi.org/10.1002/2015JA021605

Gu, H., Cui, J., Huang, X., and Sun, M. Y. (2022). Wind-enhanced hydrogen escape on Mars. Geophys. Res. Lett., 49(10), e2022GL098312. https://doi.org/10.1029/2022GL098312

Guinan, E. F., and Ribas, I. (2004). Evolution of the solar magnetic activity over time and effects on planetary atmospheres. IAU Symp., 219, 423–430. https://ui.adsabs.harvard.edu/abs/2004IAUS..219..423G

Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015). The solar wind ion analyzer for MAVEN. Space Sci. Rev., 195(1–4), 125–151. https://doi.org/10.1007/s11214-013-0029-z

Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., McFadden, J. P., Connerney, J. E. P., Espley, J. R., … Jakosky, B. M. (2017). Structure, dynamics, and seasonal variability of the Mars–solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. J. Geophys. Res.:Space Phys., 122(1), 547–578. https://doi.org/10.1002/2016JA023167

Harada, Y., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Mazelle, C., Connerney, J. E. P., Espley, J., Larson, D. E., Brain, D. A., … Jakosky, B. M. (2015). Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations. Geophys. Res. Lett., 42(21), 8925–8932. https://doi.org/10.1002/2015GL065005

Huang, H., Guo, J. P., Wang, Z. H., Lin, H. B., Zheng, J. C., Cui, J., Xu, X. J., Wang, Y., Feng, X. S., … Wan, W. X. (2019). Properties of stream interactions and their associated shocks near 1.52 au: MAVEN observations. Astrophys. J., 879(2), 118. https://doi.org/10.3847/1538-4357/ab25e9

Inui, S., Seki, K., Namekawa, T., Sakai, S., Brain, D. A., Hara, T., McFadden, J. P., Halekas, J. S., Mitchell, D. L., … Jakosky, B. M. (2018). Cold dense ion outflow observed in the Martian-induced magnetotail by MAVEN. Geophys. Res. Lett., 45(11), 5283–5289. https://doi.org/10.1029/2018GL077584

Inui, S., Seki, K., Sakai, S., Brain, D. A., Hara, T., McFadden, J. P., Halekas, J. S., Mitchell D. L., DiBraccio G. A., and Jakosky B. M. (2019). Statistical study of heavy ion outflows from Mars observed in the Martian-induced magnetotail by MAVEN. J. Geophys. Res.:Space Phys., 124(7), 5482–5497. https://doi.org/10.1029/2018JA026452

Jakosky, B. M., and Phillips, R. J. (2001). Mars’ volatile and climate history. Nature, 412(6843), 237–244. https://doi.org/10.1038/35084184

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., Connerney, J., Eparvier, F., Ergun, R., Halekas, J., Larson, D., Mahaffy, P., … Yelle, R. (2015a). MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 350(6261), aad0210. https://doi.org/10.1126/science.aad0210

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., … Zurek, R. (2015b). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev., 195(1–4), 3–48. https://doi.org/10.1007/s11214-015-0139-x

Li, S. B., Lu, H. Y., Cui, J., Yu, Y. Q., Mazelle, C., Li, Y., and Cao, J. B. (2020). Effects of a dipole-like crustal field on solar wind interaction with Mars. Earth Planet. Phys., 4(1), 23–31. https://doi.org/10.26464/epp2020005

Lillis, R. J., Brain, D. A., Bougher, S. W., Leblanc, F., Luhmann, J. G., Jakosky, B. M., Modolo, R., Fox, J., Deighan, J., … Lin, R. P. (2015). Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev., 195(1–4), 357–422. https://doi.org/10.1007/s11214-015-0165-8

Lin, R. T., Huang, S. Y., Yuan, Z. G., Jiang, K., Xu, S. B., Wei, Y. Y., Xiong, Q. Y., Zhang, J., Zhang, Z. H., … McFadden, J. (2021). Characteristics of energetic oxygen ions escaping from Mars: MAVEN observations. J. Geophys. Res.:Space Phys., 126(8), e2021JA029507. https://doi.org/10.1029/2021JA029507

Liu, Y., Nagy, A. F., Gombosi, T. I., DeZeeuw, D. L., and Powell, K. G. (2001). The solar wind interaction with Mars: results of three-dimensional three-species MHD studies. Adv. Space Res., 27(11), 1837–1846. https://doi.org/10.1016/S0273-1177(01)00301-5

Luhmann, J. G., Tatrallyay, M., and Pepin, R. O. (1992). Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions. Washington DC: American Geophysical Union. https://doi.org/10.1029/GM066

Lundin, R., Barabash, S., Fedorov, A., Holmström, M., Nilsson, H., Sauvaud, J. A., and Yamauchi, M. (2008). Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett., 35(9), L09203. https://doi.org/10.1029/2007GL032884

Lundin, R., Barabash, S., Holmström, M., Nilsson, H., Yamauchi, M., Dubinin, E. M., and Fraenz, M. (2009). Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett., 36(17), L17202. https://doi.org/10.1029/2009GL039341

Lundin, R., Barabash, S., Yamauchi, M., Nilsson, H., and Brain, D. (2011). On the relation between plasma escape and the Martian crustal magnetic field. Geophys. Res. Lett., 38(2), L02102. https://doi.org/10.1029/2010GL046019

Matsunaga, K., Seki, K., Brain, D. A., Hara, T., Masunaga, K., Mcfadden, J. P., Halekas, J. S., Mitchell, D. L., Mazelle, C., … Jakosky, B. M. (2017). Statistical study of relations between the induced magnetosphere, ion composition, and pressure balance boundaries around Mars based on MAVEN observations. J. Geophys. Res.:Space Phys., 122(9), 9723–9737. https://doi.org/10.1002/2017JA024217

McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN suprathermal and thermal ion composition (STATIC) instrument. Space Sci. Rev., 195(1–4), 199–256. https://doi.org/10.1007/s11214-015-0175-6

Mendillo, M., Withers, P., Hinson, D., Rishbeth, H., and Reinisch, B. (2006). Effects of solar flares on the ionosphere of Mars. Science, 311, 1135–1138. https://doi.org/10.1126/science.1122099

Morgan, D. D., Gurnett, D. A., Kirchner, D. L., David Winningham, J., Frahm, R. A., Brain, D. A., Mitchell, D. L., Luhmann, J. G., Nielsen, E., … Plaut, J. J. (2010). Radar absorption due to a corotating interaction region encounter with Mars detected by MARSIS. Icarus, 206(1), 95–103. https://doi.org/10.1016/j.icarus.2009.03.008

Nilsson, H., Stenberg, G., Futaana, Y., Holmström, M., Barabash, S., Lundin, R., Edberg, N. J. T., and Fedorov, A. (2012). Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes. Earth, Planets Space, 64(2), 135–148. https://doi.org/10.5047/eps.2011.04.011

Nilsson, H., Edberg, N. J. T., Stenberg, G., Barabash, S., Holmström, M., Futaana, Y., Lundin, R., and Fedorov, A. (2011). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215(2), 475–484. https://doi.org/10.1016/j.icarus.2011.08.003

Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H., and Holmström, M. (2016). Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate. Geophys. Res. Lett., 43(20), 10574–10579. https://doi.org/10.1002/2016GL070135

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci., 54(4), 357–369. https://doi.org/10.1016/j.pss.2006.01.003

Wang, Z. H., Guo, J. P., Feng, X. S., Liu, C. X., Huang, H., Lin, H. B., Tan C. M., Yan, Y. H., and Wan, W. X. (2018). The merging of two stream interaction regions within 1 au: the possible role of magnetic reconnection. Astrophys. J. Lett., 869(1), L6. https://doi.org/10.3847/2041-8213/aaf398

Weber, T., Brain, D., Xu, S. S., Mitchell, D., Espley, J., Mazelle, C., McFadden, J. P., and Jakosky, B. (2021). Martian crustal field influence on O+ and O2+ escape as measured by MAVEN. J. Geophys. Res.:Space Phys., 126(8), e2021JA029234. https://doi.org/10.1029/2021JA029234

Xu, S. S., Liemohn, M. W., Dong, C. F., Mitchell, D. L., Bougher, S. W., and Ma, Y. J. (2016a). Pressure and ion composition boundaries at Mars. J. Geophys. Res.:Space Phys., 121(7), 6417–6429. https://doi.org/10.1002/2016JA022644

Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, M., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, B. (2016b). Deep nightside photoelectron observations by MAVEN SWEA: implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527

[1]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[2]

Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032

[3]

HaiLong Li, ShuCan Ge, Lin Meng, MaoYan Wang, Abdur Rauf, Safi Ullah, 2021: Exploring the occurrence rate of PMSE-Es by Digisonde at Tromsø, Earth and Planetary Physics, 5, 187-195. doi: 10.26464/epp2021017

[4]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[5]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[6]

Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038

[7]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[8]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

[9]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[10]

HongFeng Yang, XiaoWei Chen, Rebecca Harrington, YaJing Liu, 2021: Preface to the special collection of Induced Earthquakes, Earth and Planetary Physics, 5, 483-484. doi: 10.26464/epp2021057

[11]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[12]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

[13]

SuPing Duan, Chi Wang, Weining William Liu, ZhaoHai He, 2021: Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by THEMIS, Earth and Planetary Physics, 5, 239-250. doi: 10.26464/epp2021031

[14]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[15]

Safi Ullah, HaiLong Li, Abdur Rauf, Lin Meng, Bin Wang, ShuCan Ge, MaoYan Wang, 2021: Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region, Earth and Planetary Physics, 5, 196-204. doi: 10.26464/epp2021016

[16]

ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007

[17]

Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang, 2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364. doi: 10.26464/epp2019036

[18]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[19]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[20]

SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Distribution of O+ and ${\text{O}}_{\text{2}}^{\text{+}}$ fluxes and their escape rates in the near-Mars magnetotail: A survey of MAVEN observations

HengLe Du, Xing Cao, BinBin Ni, Song Fu, Xin Ma, XiaoTong Yun, MinYi Long, Qiong Luo