Citation:
Lai, C., Li, P. W., Xu, J. Y., Yuan, W., Yue, J., Liu, X., Masaru, K., and Qian, L. L. (2022). Joint observation of the concentric gravity wave event on the Tibetan Plateau. Earth Planet. Phys., 6(3), 219–227. http://doi.org/10.26464/epp2022029
2022, 6(3): 219-227. doi: 10.26464/epp2022029
Joint observation of the concentric gravity wave event on the Tibetan Plateau
1. | School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
2. | State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 110000, China |
3. | Department of Physics, Catholic University of America, Washington, DC 20064, USA |
4. | College of Mathematics and Information Science, Henan Normal University, Xinxiang 410700, China |
5. | Department of Earth and Planetary Science, Kyushu University, Fukuoka 8190395, Japan |
A concentric gravity wave event was captured by a photographer in Nagarzê County (90.28°N, 28.33°E) between 02:00 and 04:00 (local time) on May 11, 2019. This concentric gravity wave event was also observed by the Suomi National Polar-orbiting Partnership satellite and the all-sky airglow imager at Yangbajing station (90.5°E, 30.1°N). The temporal and spatial information on gravity waves from the photographs provided a rare opportunity to study the propagation of gravity waves over the Tibetan Plateau. According to wind and temperature data from the MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications, Version 2) and empirical models (NRLMSISE-00 [Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere] and HWM [horizontal wind model]), we inversely derived the propagation trajectory from the observed wave pattern to the source region by using the ray-tracing method. The source of the concentric gravity wave was identified as deep convection in Bangladesh (90.6°E, 25.0°N). The maximum background wind speed in the propagation direction (31.05 m/s) was less than the phase speed of 53 m/s, which is consistent with the wind-filtering theory.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., … Susskind, J. (2003). AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41(2), 253–264. https://doi.org/10.1109/TGRS.2002.808356 |
Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., III, and Crowley, G. (2015). Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys. Res. Lett., 42(19), 7874–7880. https://doi.org/10.1002/2015GL065903 |
Chou, C. C., Dai, J., Kuo, C. L., and Huang, T. Y. (2016). Simultaneous observations of storm-generated sprite and gravity wave over Bangladesh. J. Geophys. Res.:Space Phys., 121(9), 9222–9233. https://doi.org/10.1002/2016JA022554 |
Dewan, E. M., Picard, R. H., O'Neil, R. R., Gardiner, H. A., Gibson, J., Mill, J. D., Richards, E., Kendra, M., and Gallery, W. O. (1998). MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., 25(7), 939–942. https://doi.org/10.1029/98GL00640 |
Eckermann, S. D. (1992). Ray-tracing simulation of the global propagation of inertia gravity waves through the zonally averaged middle atmosphere. J. Geophys. Res.:Atmos., 97(D14), 15849–15866. https://doi.org/10.1029/92jd01410 |
Fritts, D. C., and Yuan, L. (1989). An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts. J. Geophys. Res.:Atmos., 94(D15), 18455–18466. https://doi.org/10.1029/JD094iD15p18455 |
Fritts, D. C., and Alexander M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003. https://doi.org/10.1029/2001RG000106 |
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., … Vincent, R. A. (1996). Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(13), 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0 |
Hersbach, H., and Dee, D. (2016). ERA5 reanalysis is in production. ECMWF Newsletter, 147. |
Hodges, R. R. Jr. (1967). Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res., 72(13), 3455–3458. https://doi.org/10.1029/JZ072i013p03455 |
Holton, J. R. (1992). An Introduction to Dynamic Meteorology (3rd ed). San Diego: Academic Press.222 |
Jones, W. L. (1969). Ray tracing for internal gravity waves. J. Geophys. Res., 74(8), 2028–2033. https://doi.org/10.1029/JB074i008p02028 |
Kogure, M., Yue, J., Nakamura, T., Hoffmann, L., Vadas, S. L., Tomikawa, Y., Ejiri, M. K., and Janches, D. (2020). First direct observational evidence for secondary gravity waves generated by mountain waves over the Andes. Geophys. Res. Lett., 47(17), e2020GL088845. https://doi.org/10.1029/2020GL088845 |
Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res.:Oceans, 86(C10), 9707–9714. https://doi.org/10.1029/JC086iC10p09707 |
Liu, X., Xu, J. Y., and Yue, J. (2020). Global static stability and its relation to gravity waves in the middle atmosphere. Earth Planet. Phys., 4(5), 504–512. https://doi.org/10.26464/epp2020047 |
McFarlane, N. A. (1987). The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44(14), 1775–1800. https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 |
Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F., and Hawkins, J. D. (2012). Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA, 109(39), 15706–15711. https://doi.org/10.1073/pnas.1207034109 |
Miller, S. D., Straka, W. C., III, Yue, J., Smith, S. M., Alexander, M. J., Hoffmann, L., Setvák, M., and Partain, P. T. (2015). Upper atmospheric gravity wave details revealed in nightglow satellite imagery. Proc. Natl. Acad. Sci. USA, 112(49), E6728–E6735. https://doi.org/10.1073/pnas.1508084112 |
Nappo, C. J. (2002). An Introduction to Atmospheric Gravity Waves (pp. 6–9). Amsterdam: Academic Press.222 |
Perryman, M., Lindegren, L., Kovalevsky, J., et al. (1997). The HIPPARCOS catalogue. Astron. Astrophys., 323, L49-L52.222 |
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res.:Space Phys., 107(A12), 1468. https://doi.org/10.1029/2002ja009430 |
Qian, L. Y., Burns, A. G., Solomon, S. C., and Wang, W. B. (2013). Annual/semiannual variation of the ionosphere. Geophys. Res. Lett., 40(10), 1928–1933. https://doi.org/10.1002/grl.50448 |
Regmi, R. P., Kitada, T., Dudhia, J., and Maharjan, S. (2017). Large-scale gravity current over the middle hills of the Nepal Himalaya: implications for aircraft accidents. J. Appl. Meteor. Climatol., 56(2), 371–390. https://doi.org/10.1175/JAMC-D-16-0073.1 |
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., … Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24(14), 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1 |
Shi, G. C., Hu, X., Yao, Z. G., Guo, W. J., Sun, M. C., and Gong, X. Y. (2021). Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection. Earth Planet. Phys., 5(1), 79–89. https://doi.org/10.26464/epp2021002 |
Suzuki, S., Shiokawa, K., Otsuka, Y., Ogawa, T., Nakamura, K., and Nakamura, T. (2007). A concentric gravity wave structure in the mesospheric airglow images. J. Geophys. Res.:Atmos., 112(D2), D02102. https://doi.org/10.1029/2005JD006558 |
Suzuki, S., Vadas, S. L., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y. (2013a). Typhoon-induced concentric airglow structures in the mesopause region. Geophys. Res. Lett., 40(22), 5983–5987. https://doi.org/10.1002/2013GL058087 |
Suzuki, S., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y. (2013b). Evidence of gravity wave ducting in the mesopause region from airglow network observations. Geophys. Res. Lett., 40(3), 601–605. https://doi.org/10.1029/2012GL054605 |
Vadas, S. L., and Fritts, D. C. (2009). Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann. Geophys., 27(1), 147–177. https://doi.org/10.5194/angeo-27-147-2009 |
Vadas, S. L., Yue, J., She, C. Y., Stamus, P. A., and Liu, A. Z. (2009). A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J. Geophys. Res.:Atmos., 114(D6), D06103. https://doi.org/10.1029/2008JD010753 |
Wrasse, C. M., Nakamura, T., Tsuda, T., Takahashi, H., Medeiros, A. F., Taylor, M. J., Gobbi, D., Salatun, A., Suratno, … Admiranto, A. G. (2006). Reverse ray tracing of the mesospheric gravity waves observed at 23°S (Brazil) and 7°S (Indonesia) in airglow imagers. J. Atmos. Sol.-Terr. Phys., 68(2), 163–181. https://doi.org/10.1016/j.jastp.2005.10.012 |
Xu, J. Y., Li, Q. Z., Yue, J., Hoffmann, L., Straka, W. C., III, Wang, C. M., Liu, M. H., Yuan, W., Han, S. … Ning, B. Q. (2015). Concentric gravity waves over northern China observed by an airglow imager network and satellites. J. Geophys. Res.:Atmos., 120(21), 11058–11078. https://doi.org/10.1002/2015JD023786 |
Yue, J., Vadas, S. L., She, C. Y., Nakamura, T., Reising, S. C., Liu, H. L., Stamus, P., Krueger, D. A., Lyons, W., and Li, T. (2009). Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res.:Atmos., 114(D6), D06104. https://doi.org/10.1029/2008JD011244 |
Yue, J., Miller, S. D., Hoffmann, L., and Straka, W. C., III. (2014). Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen: joint AIRS and VIIRS satellite observations. J. Atmos. Sol.-Terr. Phys., 119, 83–90. https://doi.org/10.1016/j.jastp.2014.07.003 |
[1] |
RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045 |
[2] |
JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017 |
[3] |
Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030 |
[4] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[5] |
Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044 |
[6] |
YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038 |
[7] |
ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008 |
[8] |
KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005 |
[9] |
HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, and HeTing Jian, 2022: Vertical Crustal Deformation Velocity and its Influencing Factors over the Qinghai-Tibet Plateau based on the Satellite Gravity Data, Earth and Planetary Physics. doi: 10.26464/epp2022034 |
[10] |
Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002 |
[11] |
YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035 |
[12] |
Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050 |
[13] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049 |
[14] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[15] |
Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030 |
[16] |
YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015 |
[17] |
Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029 |
[18] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[19] |
HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029 |
[20] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)